Periodic solutions of arbitrary length in a simple integer iteration

<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = &#8968;<it>ay</it><sub><it>n</it></sub>&#8969;-<it>y</it><s...

Full description

Bibliographic Details
Main Author: Clark Dean
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2006/035847
Description
Summary:<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = &#8968;<it>ay</it><sub><it>n</it></sub>&#8969;-<it>y</it><sub><it>n</it>-1</sub>, {<it>a</it> &#8712; &#8477;:|<it>a</it>|&lt;2, <it>a</it>&#8800;0,&#177;1}, <it>y</it><sub>0</sub>, <it>y</it><sub>1</sub> &#8712; &#8484;, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane.</p>
ISSN:1687-1839
1687-1847