The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems

We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D0+αu(t)+f1(t,u(t),v(t),(ϕ1u)(t),(ψ1v)(t),D0+pu(t),D0+μ1v(t),D0+μ2v(t),…,D0+μmv(t))=0,D0+βv(t)+f2(t,u(t),v(t),(ϕ2u)(t),(ψ2v)(t),D0+qv(t),D0+ν1u(t),D0+ν2u...

Full description

Bibliographic Details
Main Authors: Dumitru Baleanu, Sayyedeh Zahra Nazemi, Shahram Rezapour
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/368659
id doaj-dce91a4ae7f947e98ab76a6bd4b2fcc8
record_format Article
spelling doaj-dce91a4ae7f947e98ab76a6bd4b2fcc82020-11-24T23:54:04ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/368659368659The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value ProblemsDumitru Baleanu0Sayyedeh Zahra Nazemi1Shahram Rezapour2Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, Azarbaijan Shahid Madani University, Azarshahr, Tabriz 9177948974, IranDepartment of Mathematics, Azarbaijan Shahid Madani University, Azarshahr, Tabriz 9177948974, IranWe discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D0+αu(t)+f1(t,u(t),v(t),(ϕ1u)(t),(ψ1v)(t),D0+pu(t),D0+μ1v(t),D0+μ2v(t),…,D0+μmv(t))=0,D0+βv(t)+f2(t,u(t),v(t),(ϕ2u)(t),(ψ2v)(t),D0+qv(t),D0+ν1u(t),D0+ν2u(t),…,D0+νmu(t))=0, u(i)(0)=0 and v(i)(0)=0 for all 0≤i≤n-2, [D0+δ1u(t)]t=1=0 for 2<δ1<n-1 and α-δ1≥1, [D0+δ2v(t)]t=1=0 for 2<δ2<n-1 and β-δ2≥1, where n≥4, n-1<α,β<n, 0<p,q<1, 1<μi,νi<2  (i=1,2,…,m), γj,λj:[0,1]×[0,1]→(0,∞) are continuous functions (j=1,2) and (ϕju)(t)=∫0t‍γj(t,s)u(s)ds,(ψjv)(t)=∫0t‍λj(t,s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, fj  (j=1,2) is a Caratheodory function, and fj(t,x,y,z,w,v,u1,u2,…,um) is singular at the value 0 of its variables.http://dx.doi.org/10.1155/2013/368659
collection DOAJ
language English
format Article
sources DOAJ
author Dumitru Baleanu
Sayyedeh Zahra Nazemi
Shahram Rezapour
spellingShingle Dumitru Baleanu
Sayyedeh Zahra Nazemi
Shahram Rezapour
The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
Abstract and Applied Analysis
author_facet Dumitru Baleanu
Sayyedeh Zahra Nazemi
Shahram Rezapour
author_sort Dumitru Baleanu
title The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
title_short The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
title_full The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
title_fullStr The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
title_full_unstemmed The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
title_sort existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2013-01-01
description We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D0+αu(t)+f1(t,u(t),v(t),(ϕ1u)(t),(ψ1v)(t),D0+pu(t),D0+μ1v(t),D0+μ2v(t),…,D0+μmv(t))=0,D0+βv(t)+f2(t,u(t),v(t),(ϕ2u)(t),(ψ2v)(t),D0+qv(t),D0+ν1u(t),D0+ν2u(t),…,D0+νmu(t))=0, u(i)(0)=0 and v(i)(0)=0 for all 0≤i≤n-2, [D0+δ1u(t)]t=1=0 for 2<δ1<n-1 and α-δ1≥1, [D0+δ2v(t)]t=1=0 for 2<δ2<n-1 and β-δ2≥1, where n≥4, n-1<α,β<n, 0<p,q<1, 1<μi,νi<2  (i=1,2,…,m), γj,λj:[0,1]×[0,1]→(0,∞) are continuous functions (j=1,2) and (ϕju)(t)=∫0t‍γj(t,s)u(s)ds,(ψjv)(t)=∫0t‍λj(t,s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, fj  (j=1,2) is a Caratheodory function, and fj(t,x,y,z,w,v,u1,u2,…,um) is singular at the value 0 of its variables.
url http://dx.doi.org/10.1155/2013/368659
work_keys_str_mv AT dumitrubaleanu theexistenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
AT sayyedehzahranazemi theexistenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
AT shahramrezapour theexistenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
AT dumitrubaleanu existenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
AT sayyedehzahranazemi existenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
AT shahramrezapour existenceofpositivesolutionsforanewcoupledsystemofmultitermsingularfractionalintegrodifferentialboundaryvalueproblems
_version_ 1725467466737385472