A Linear, Millimetre Displacement-to-Frequency Transducer

The paper presents a novel linear, high-fidelity millimetre displacement-to-frequency transducer, based on the resistive conversion of displacement into a proportional voltage, and then frequency. The derivation of the nonlinearity, fidelity and sensitivity of the transducer is presented. Experiment...

Full description

Bibliographic Details
Main Authors: John T. Agee, Four K. Petto
Format: Article
Language:English
Published: MDPI AG 2012-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/12/8/10820
Description
Summary:The paper presents a novel linear, high-fidelity millimetre displacement-to-frequency transducer, based on the resistive conversion of displacement into a proportional voltage, and then frequency. The derivation of the nonlinearity, fidelity and sensitivity of the transducer is presented. Experimental results confirm that a displacement of 0–100 mm is converted into a frequency range of 0–100 kHz, with a normalised fidelity factor of 99.91%, and a worst-case nonlinearity of less than 0.08%. Tests using laboratory standards show that a displacement of 10 mm is transduced with an accuracy of ±0.6%, and a standard deviation of 530 Hz. Estimates included in the paper show that the transducer could cost less than 1% of existing systems for millimeter displacement measurement.
ISSN:1424-8220