A Poincaré Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms

<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2010-323069-i1.gif"/></inline-formula> be an open subset and <inline-formula> <graphic file="1687-1812-2010-323069-i2.gif"/></inline-formula> be an arbitrary loc...

Full description

Bibliographic Details
Main Authors: Salazar Jos&#233;M, Ruiz del Portal FranciscoR
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/323069
id doaj-dcd6f0caa3c44b45b5dc2158a39f8292
record_format Article
spelling doaj-dcd6f0caa3c44b45b5dc2158a39f82922020-11-25T01:03:37ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101323069A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar HomeomorphismsSalazar Jos&#233;MRuiz del Portal FranciscoR<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2010-323069-i1.gif"/></inline-formula> be an open subset and <inline-formula> <graphic file="1687-1812-2010-323069-i2.gif"/></inline-formula> be an arbitrary local homeomorphism with <inline-formula> <graphic file="1687-1812-2010-323069-i3.gif"/></inline-formula>. We compute the fixed point indices of the iterates of <inline-formula> <graphic file="1687-1812-2010-323069-i4.gif"/></inline-formula> at <inline-formula> <graphic file="1687-1812-2010-323069-i5.gif"/></inline-formula>, and we identify these indices in dynamical terms. Therefore, we obtain a sort of Poincar&#233; index formula without differentiability assumptions. Our techniques apply equally to both orientation preserving and orientation reversing homeomorphisms. We present some new results, especially in the orientation reversing case.</p>http://www.fixedpointtheoryandapplications.com/content/2010/323069
collection DOAJ
language English
format Article
sources DOAJ
author Salazar Jos&#233;M
Ruiz del Portal FranciscoR
spellingShingle Salazar Jos&#233;M
Ruiz del Portal FranciscoR
A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
Fixed Point Theory and Applications
author_facet Salazar Jos&#233;M
Ruiz del Portal FranciscoR
author_sort Salazar Jos&#233;M
title A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
title_short A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
title_full A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
title_fullStr A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
title_full_unstemmed A Poincar&#233; Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms
title_sort poincar&#233; formula for the fixed point indices of the iterates of arbitrary planar homeomorphisms
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2010-01-01
description <p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2010-323069-i1.gif"/></inline-formula> be an open subset and <inline-formula> <graphic file="1687-1812-2010-323069-i2.gif"/></inline-formula> be an arbitrary local homeomorphism with <inline-formula> <graphic file="1687-1812-2010-323069-i3.gif"/></inline-formula>. We compute the fixed point indices of the iterates of <inline-formula> <graphic file="1687-1812-2010-323069-i4.gif"/></inline-formula> at <inline-formula> <graphic file="1687-1812-2010-323069-i5.gif"/></inline-formula>, and we identify these indices in dynamical terms. Therefore, we obtain a sort of Poincar&#233; index formula without differentiability assumptions. Our techniques apply equally to both orientation preserving and orientation reversing homeomorphisms. We present some new results, especially in the orientation reversing case.</p>
url http://www.fixedpointtheoryandapplications.com/content/2010/323069
work_keys_str_mv AT salazarjos233m apoincar233formulaforthefixedpointindicesoftheiteratesofarbitraryplanarhomeomorphisms
AT ruizdelportalfranciscor apoincar233formulaforthefixedpointindicesoftheiteratesofarbitraryplanarhomeomorphisms
AT salazarjos233m poincar233formulaforthefixedpointindicesoftheiteratesofarbitraryplanarhomeomorphisms
AT ruizdelportalfranciscor poincar233formulaforthefixedpointindicesoftheiteratesofarbitraryplanarhomeomorphisms
_version_ 1715865138436767744