A Poincaré Formula for the Fixed Point Indices of the Iterates of Arbitrary Planar Homeomorphisms

<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2010-323069-i1.gif"/></inline-formula> be an open subset and <inline-formula> <graphic file="1687-1812-2010-323069-i2.gif"/></inline-formula> be an arbitrary loc...

Full description

Bibliographic Details
Main Authors: Salazar Jos&#233;M, Ruiz del Portal FranciscoR
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/323069
Description
Summary:<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2010-323069-i1.gif"/></inline-formula> be an open subset and <inline-formula> <graphic file="1687-1812-2010-323069-i2.gif"/></inline-formula> be an arbitrary local homeomorphism with <inline-formula> <graphic file="1687-1812-2010-323069-i3.gif"/></inline-formula>. We compute the fixed point indices of the iterates of <inline-formula> <graphic file="1687-1812-2010-323069-i4.gif"/></inline-formula> at <inline-formula> <graphic file="1687-1812-2010-323069-i5.gif"/></inline-formula>, and we identify these indices in dynamical terms. Therefore, we obtain a sort of Poincar&#233; index formula without differentiability assumptions. Our techniques apply equally to both orientation preserving and orientation reversing homeomorphisms. We present some new results, especially in the orientation reversing case.</p>
ISSN:1687-1820
1687-1812