Summary: | <p>Abstract</p> <p>Background</p> <p>β-1→3-D-glucans represent a pathogen-associated molecular pattern and are able to modify biological responses. Employing a comprehensive methodological approach, the aim of our <it>in vitro </it>study was to elucidate novel molecular and cellular mechanisms of human peripheral blood immune cells mediated by a fungal β-1→3-D-glucan, <it>i.e</it>. glucan phosphate, in the presence of lipopolysaccharide (LPS) or toxic shock syndrome toxin 1 (TSST-1).</p> <p>Results</p> <p>Despite an activation of nuclear factor (NF)κB, NFinterleukin(IL)-6 and NFAT similar to LPS or TSST-1, we observed no significant production of IL-1β, IL-6, tumor necrosis factor α or interferon γ induced by glucan phosphate. Glucan phosphate-treated leukocytes induced a substantial amount of IL-8 (peak at 18 h: 5000 pg/ml), likely due to binding of NFκB to a consensus site in the IL-8 promoter. An increase in IL-1receptor antagonist(RA) production (peak at 24 h: 12000 pg/ml) by glucan phosphate-treated cells positively correlated with IL-8 levels. Glucan phosphate induced significant binding to a known NFIL-6 site and a new NFAT site within the IL-1RA promoter, which was confirmed by inhibition experiments. When applied in combination with either LPS or TSST-1 at the same time points, we detected that glucan phosphate elevated the LPS- and the TSST-1-induced DNA binding of NFκB, NFIL-6 and NFAT, leading to a synergistic increase of IL-1RA. Further, glucan phosphate modulated the TSST-1-induced inflammatory response via reduction of IL-1β and IL-6. As a consequence, glucan phosphate shifted the TSST-1-induced IL-1β/IL-1RA ratio towards an anti-inflammatory phenotype. Subsequently, glucan phosphate decreased the TSST-1-induced, IL-1-dependent production of IL-2.</p> <p>Conclusion</p> <p>Thus, β-1→3-D-glucans may induce beneficial effects in the presence of pro-inflammatory responses, downstream of receptor binding and signaling by switching a pro- to an anti-inflammatory IL-1RA-mediated reaction. Our results also offer new insights into the complex regulation of the IL-1RA gene, which can be modulated by a β-1→3-D-glucan.</p>
|