Sequencing degraded RNA addressed by 3' tag counting.
RNA sequencing has become widely used in gene expression profiling experiments. Prior to any RNA sequencing experiment the quality of the RNA must be measured to assess whether or not it can be used for further downstream analysis. The RNA integrity number (RIN) is a scale used to measure the qualit...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3954844?pdf=render |
id |
doaj-dca4e1caaa8b4f4e9d1fb8025c10ece4 |
---|---|
record_format |
Article |
spelling |
doaj-dca4e1caaa8b4f4e9d1fb8025c10ece42020-11-25T01:19:08ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0193e9185110.1371/journal.pone.0091851Sequencing degraded RNA addressed by 3' tag counting.Benjamín SigurgeirssonOlof EmanuelssonJoakim LundebergRNA sequencing has become widely used in gene expression profiling experiments. Prior to any RNA sequencing experiment the quality of the RNA must be measured to assess whether or not it can be used for further downstream analysis. The RNA integrity number (RIN) is a scale used to measure the quality of RNA that runs from 1 (completely degraded) to 10 (intact). Ideally, samples with high RIN (> 8) are used in RNA sequencing experiments. RNA, however, is a fragile molecule which is susceptible to degradation and obtaining high quality RNA is often hard, or even impossible when extracting RNA from certain clinical tissues. Thus, occasionally, working with low quality RNA is the only option the researcher has. Here we investigate the effects of RIN on RNA sequencing and suggest a computational method to handle data from samples with low quality RNA which also enables reanalysis of published datasets. Using RNA from a human cell line we generated and sequenced samples with varying RINs and illustrate what effect the RIN has on the basic procedure of RNA sequencing; both quality aspects and differential expression. We show that the RIN has systematic effects on gene coverage, false positives in differential expression and the quantification of duplicate reads. We introduce 3' tag counting (3TC) as a computational approach to reliably estimate differential expression for samples with low RIN. We show that using the 3TC method in differential expression analysis significantly reduces false positives when comparing samples with different RIN, while retaining reasonable sensitivity.http://europepmc.org/articles/PMC3954844?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Benjamín Sigurgeirsson Olof Emanuelsson Joakim Lundeberg |
spellingShingle |
Benjamín Sigurgeirsson Olof Emanuelsson Joakim Lundeberg Sequencing degraded RNA addressed by 3' tag counting. PLoS ONE |
author_facet |
Benjamín Sigurgeirsson Olof Emanuelsson Joakim Lundeberg |
author_sort |
Benjamín Sigurgeirsson |
title |
Sequencing degraded RNA addressed by 3' tag counting. |
title_short |
Sequencing degraded RNA addressed by 3' tag counting. |
title_full |
Sequencing degraded RNA addressed by 3' tag counting. |
title_fullStr |
Sequencing degraded RNA addressed by 3' tag counting. |
title_full_unstemmed |
Sequencing degraded RNA addressed by 3' tag counting. |
title_sort |
sequencing degraded rna addressed by 3' tag counting. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
RNA sequencing has become widely used in gene expression profiling experiments. Prior to any RNA sequencing experiment the quality of the RNA must be measured to assess whether or not it can be used for further downstream analysis. The RNA integrity number (RIN) is a scale used to measure the quality of RNA that runs from 1 (completely degraded) to 10 (intact). Ideally, samples with high RIN (> 8) are used in RNA sequencing experiments. RNA, however, is a fragile molecule which is susceptible to degradation and obtaining high quality RNA is often hard, or even impossible when extracting RNA from certain clinical tissues. Thus, occasionally, working with low quality RNA is the only option the researcher has. Here we investigate the effects of RIN on RNA sequencing and suggest a computational method to handle data from samples with low quality RNA which also enables reanalysis of published datasets. Using RNA from a human cell line we generated and sequenced samples with varying RINs and illustrate what effect the RIN has on the basic procedure of RNA sequencing; both quality aspects and differential expression. We show that the RIN has systematic effects on gene coverage, false positives in differential expression and the quantification of duplicate reads. We introduce 3' tag counting (3TC) as a computational approach to reliably estimate differential expression for samples with low RIN. We show that using the 3TC method in differential expression analysis significantly reduces false positives when comparing samples with different RIN, while retaining reasonable sensitivity. |
url |
http://europepmc.org/articles/PMC3954844?pdf=render |
work_keys_str_mv |
AT benjaminsigurgeirsson sequencingdegradedrnaaddressedby3tagcounting AT olofemanuelsson sequencingdegradedrnaaddressedby3tagcounting AT joakimlundeberg sequencingdegradedrnaaddressedby3tagcounting |
_version_ |
1725139774418714624 |