Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease
<p>Abstract</p> <p>As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targe...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2004-12-01
|
Series: | Cerebrospinal Fluid Research |
Online Access: | http://www.cerebrospinalfluidresearch.com/content/1/1/3 |
id |
doaj-dc8f52e728d6400f874c37067c6e9151 |
---|---|
record_format |
Article |
spelling |
doaj-dc8f52e728d6400f874c37067c6e91512020-11-24T21:36:20ZengBMCCerebrospinal Fluid Research1743-84542004-12-0111310.1186/1743-8454-1-3Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's diseaseDuncan JohnSpangenberger AnthonyTavares RosemarieMcMillan PaulJohanson ConradSilverberg GeraldStopa Edward<p>Abstract</p> <p>As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.</p> http://www.cerebrospinalfluidresearch.com/content/1/1/3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Duncan John Spangenberger Anthony Tavares Rosemarie McMillan Paul Johanson Conrad Silverberg Gerald Stopa Edward |
spellingShingle |
Duncan John Spangenberger Anthony Tavares Rosemarie McMillan Paul Johanson Conrad Silverberg Gerald Stopa Edward Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease Cerebrospinal Fluid Research |
author_facet |
Duncan John Spangenberger Anthony Tavares Rosemarie McMillan Paul Johanson Conrad Silverberg Gerald Stopa Edward |
author_sort |
Duncan John |
title |
Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease |
title_short |
Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease |
title_full |
Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease |
title_fullStr |
Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease |
title_full_unstemmed |
Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease |
title_sort |
homeostatic capabilities of the choroid plexus epithelium in alzheimer's disease |
publisher |
BMC |
series |
Cerebrospinal Fluid Research |
issn |
1743-8454 |
publishDate |
2004-12-01 |
description |
<p>Abstract</p> <p>As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.</p> |
url |
http://www.cerebrospinalfluidresearch.com/content/1/1/3 |
work_keys_str_mv |
AT duncanjohn homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT spangenbergeranthony homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT tavaresrosemarie homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT mcmillanpaul homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT johansonconrad homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT silverberggerald homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease AT stopaedward homeostaticcapabilitiesofthechoroidplexusepitheliuminalzheimersdisease |
_version_ |
1725941496692080640 |