Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis

In this study, we analyzed differences in the enzyme activities and transcriptomes of embryogenic and non-embryogenic calli to gain insights for improving the success of tissue culture-based breeding. A total of 2,856 differentially expressed genes (DEGs; 1,632 up-regulated and 1,224 down-regulated)...

Full description

Bibliographic Details
Main Authors: Lejun Ouyang, Zechen Wang, Limei Li, Baoling Chen
Format: Article
Language:English
Published: PeerJ Inc. 2020-03-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/8776.pdf
id doaj-dc8960f26cc946a7a119812c9c857794
record_format Article
spelling doaj-dc8960f26cc946a7a119812c9c8577942020-11-25T02:31:43ZengPeerJ Inc.PeerJ2167-83592020-03-018e877610.7717/peerj.8776Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandisLejun OuyangZechen WangLimei LiBaoling ChenIn this study, we analyzed differences in the enzyme activities and transcriptomes of embryogenic and non-embryogenic calli to gain insights for improving the success of tissue culture-based breeding. A total of 2,856 differentially expressed genes (DEGs; 1,632 up-regulated and 1,224 down-regulated) were identified based on RNA sequencing and verified by reverse transcription quantitative polymerase chain reaction. Gene set enrichment analysis revealed that many of the up-regulated DEGs in embryogenic callus were enriched in the photosynthesis processes. Furthermore, the enzyme activity, hormone content, and cytokinin oxidase/dehydrogenase (CKX) gene expression analyses were found to be consistent with the transcriptome results. Cytokinin biosynthesis in N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea (PBU)-induced embryogenic callus increased owing to CKX repression. Measurement of endogenous hormones by high-performance liquid chromatography revealed that, compared with non-embryogenic callus, in embryogenic callus, the indole-3-acetic acid, abscisic acid and trans-zeatin riboside content had significantly higher values of 129.7, 127.8 and 78.9 ng/g, respectively. Collectively, the findings of this study will provide a foundation for elucidating the molecular mechanisms underlying embryogenic callus differentiation and can potentially contribute to developing procedures aimed at enhancing the success of callus-based plant regeneration.https://peerj.com/articles/8776.pdfGene profile analysisPlant tissue cultureCallus qualitative assessmentPhenylpropanoid biosynthesis
collection DOAJ
language English
format Article
sources DOAJ
author Lejun Ouyang
Zechen Wang
Limei Li
Baoling Chen
spellingShingle Lejun Ouyang
Zechen Wang
Limei Li
Baoling Chen
Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
PeerJ
Gene profile analysis
Plant tissue culture
Callus qualitative assessment
Phenylpropanoid biosynthesis
author_facet Lejun Ouyang
Zechen Wang
Limei Li
Baoling Chen
author_sort Lejun Ouyang
title Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
title_short Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
title_full Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
title_fullStr Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
title_full_unstemmed Physiological parameters and differential expression analysis of N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of Eucalyptus urophylla × Eucalyptus grandis
title_sort physiological parameters and differential expression analysis of n-phenyl-n′-[6-(2-chlorobenzothiazol)-yl] urea-induced callus of eucalyptus urophylla × eucalyptus grandis
publisher PeerJ Inc.
series PeerJ
issn 2167-8359
publishDate 2020-03-01
description In this study, we analyzed differences in the enzyme activities and transcriptomes of embryogenic and non-embryogenic calli to gain insights for improving the success of tissue culture-based breeding. A total of 2,856 differentially expressed genes (DEGs; 1,632 up-regulated and 1,224 down-regulated) were identified based on RNA sequencing and verified by reverse transcription quantitative polymerase chain reaction. Gene set enrichment analysis revealed that many of the up-regulated DEGs in embryogenic callus were enriched in the photosynthesis processes. Furthermore, the enzyme activity, hormone content, and cytokinin oxidase/dehydrogenase (CKX) gene expression analyses were found to be consistent with the transcriptome results. Cytokinin biosynthesis in N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea (PBU)-induced embryogenic callus increased owing to CKX repression. Measurement of endogenous hormones by high-performance liquid chromatography revealed that, compared with non-embryogenic callus, in embryogenic callus, the indole-3-acetic acid, abscisic acid and trans-zeatin riboside content had significantly higher values of 129.7, 127.8 and 78.9 ng/g, respectively. Collectively, the findings of this study will provide a foundation for elucidating the molecular mechanisms underlying embryogenic callus differentiation and can potentially contribute to developing procedures aimed at enhancing the success of callus-based plant regeneration.
topic Gene profile analysis
Plant tissue culture
Callus qualitative assessment
Phenylpropanoid biosynthesis
url https://peerj.com/articles/8776.pdf
work_keys_str_mv AT lejunouyang physiologicalparametersanddifferentialexpressionanalysisofnphenyln62chlorobenzothiazolylureainducedcallusofeucalyptusurophyllaeucalyptusgrandis
AT zechenwang physiologicalparametersanddifferentialexpressionanalysisofnphenyln62chlorobenzothiazolylureainducedcallusofeucalyptusurophyllaeucalyptusgrandis
AT limeili physiologicalparametersanddifferentialexpressionanalysisofnphenyln62chlorobenzothiazolylureainducedcallusofeucalyptusurophyllaeucalyptusgrandis
AT baolingchen physiologicalparametersanddifferentialexpressionanalysisofnphenyln62chlorobenzothiazolylureainducedcallusofeucalyptusurophyllaeucalyptusgrandis
_version_ 1724822568978874368