A new characterization of the projective linear groups by the Sylow numbers

Let G be a finite group, pi (G) be the set of primes p such that G contains an element of order p and n_{p}(G) be the number of Sylow p-subgroup of G, that is, n_{p}(G)=|Syl_{p}(G)|. Set NS(G):=\{n_{p}|p\in \pi (G)\}, the set of the all of the number of Sylow subgroups of G. In this paper, we show t...

Full description

Bibliographic Details
Main Author: Alireza Khalili Asboei
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19156
Description
Summary:Let G be a finite group, pi (G) be the set of primes p such that G contains an element of order p and n_{p}(G) be the number of Sylow p-subgroup of G, that is, n_{p}(G)=|Syl_{p}(G)|. Set NS(G):=\{n_{p}|p\in \pi (G)\}, the set of the all of the number of Sylow subgroups of G. In this paper, we show that the linear groups PSL(2, q) are recognizable by NS(G) and order. Also we prove that if NS(G)=NS(PSL(2,8)$), then G is isomorphic to PSL(2,8) or Aut(PSL(2,8)).
ISSN:0037-8712
2175-1188