Necessary conditions for local and global existence to a reaction-diffusion system with fractional derivatives
We give some necessary conditions for local and global existence of a solution to reaction-diffusion system of type (FDS) with temporal and spacial fractional derivatives. As in the case of single equation of type (STFE) studied by M. Kirane et al. (2005), we prove that these conditions depend on th...
Main Authors: | Kamel Haouam, Mourad Sfaxi |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS/2006/85203 |
Similar Items
-
A necessary and sufficient condition for global existence for a quasilinear reaction-diffusion system
by: Alan V. Lair
Published: (2005-01-01) -
Necessary conditions for reaction-diffusion system with delay preserving positivity
by: Lirui Feng, et al.
Published: (2016-08-01) -
Global existence of solutions for reaction-diffusion systems with a full matrix of diffusion coefficients and nonhomogeneous boundary conditions
by: Said Kouachi
Published: (2002-01-01) -
Invariant regions and existence of global solutions to reaction-diffusion systems without conditions on the growth of nonlinearities
by: Samir Bendoukha, et al.
Published: (2016-06-01) -
Global existence and fast-reaction limit in reaction-diffusion systems with cross effects
by: Rolland, Guillaume
Published: (2012)