k-Space Magnetism as the Origin of Superconductivity
The nonadiabatic Heisenberg model presents a nonadiabatic mechanism generating Cooper pairs in narrow, roughly half-filled “superconducting bands” of special symmetry. Here, I show that this mechanism may be understood as the outcome of a special spin structure in the reciprocal...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-8994/10/7/259 |
Summary: | The nonadiabatic Heisenberg model presents a nonadiabatic mechanism generating Cooper pairs in narrow, roughly half-filled “superconducting bands” of special symmetry. Here, I show that this mechanism may be understood as the outcome of a special spin structure in the reciprocal space, hereinafter referred to as “k-space magnetism”. The presented picture permits a vivid depiction of this new mechanism highlighting the height similarity as well as the essential difference between the new nonadiabatic and the familiar Bardeen–Cooper–Schrieffer mechanism. |
---|---|
ISSN: | 2073-8994 |