GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.

The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocy...

Full description

Bibliographic Details
Main Authors: Akane Fujita, Shingo Koinuma, Sayaka Yasuda, Hiroyuki Nagai, Hiroyuki Kamiguchi, Naoyuki Wada, Takeshi Nakamura
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3817099?pdf=render
id doaj-dc5f12f193fd46cdbbe79c7f24a87b43
record_format Article
spelling doaj-dc5f12f193fd46cdbbe79c7f24a87b432020-11-25T01:49:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-01811e7968910.1371/journal.pone.0079689GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.Akane FujitaShingo KoinumaSayaka YasudaHiroyuki NagaiHiroyuki KamiguchiNaoyuki WadaTakeshi NakamuraThe use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.http://europepmc.org/articles/PMC3817099?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Akane Fujita
Shingo Koinuma
Sayaka Yasuda
Hiroyuki Nagai
Hiroyuki Kamiguchi
Naoyuki Wada
Takeshi Nakamura
spellingShingle Akane Fujita
Shingo Koinuma
Sayaka Yasuda
Hiroyuki Nagai
Hiroyuki Kamiguchi
Naoyuki Wada
Takeshi Nakamura
GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
PLoS ONE
author_facet Akane Fujita
Shingo Koinuma
Sayaka Yasuda
Hiroyuki Nagai
Hiroyuki Kamiguchi
Naoyuki Wada
Takeshi Nakamura
author_sort Akane Fujita
title GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
title_short GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
title_full GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
title_fullStr GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
title_full_unstemmed GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.
title_sort gtp hydrolysis of tc10 promotes neurite outgrowth through exocytic fusion of rab11- and l1-containing vesicles by releasing exocyst component exo70.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.
url http://europepmc.org/articles/PMC3817099?pdf=render
work_keys_str_mv AT akanefujita gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT shingokoinuma gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT sayakayasuda gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT hiroyukinagai gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT hiroyukikamiguchi gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT naoyukiwada gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
AT takeshinakamura gtphydrolysisoftc10promotesneuriteoutgrowththroughexocyticfusionofrab11andl1containingvesiclesbyreleasingexocystcomponentexo70
_version_ 1725005163897290752