On the Stability of Linear Incommensurate Fractional-Order Difference Systems
To follow up on the progress made on exploring the stability investigation of linear commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that appears with incommensurate orders is discussed and examined in this work. Some simple applicable conditions for judg...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/10/1754 |
Summary: | To follow up on the progress made on exploring the stability investigation of linear commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that appears with incommensurate orders is discussed and examined in this work. Some simple applicable conditions for judging the stability of these systems are reported as novel results. These results are formulated by converting the linear incommensurate FoDS into another equivalent system consists of fractional-order difference equations of Volterra convolution-type as well as by using some properties of the <i>Z</i>-transform method. All results of this work are verified numerically by illustrating some examples that deal with the stability of solutions of such systems. |
---|---|
ISSN: | 2227-7390 |