Programmed evolution for optimization of orthogonal metabolic output in bacteria.
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacter...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4340930?pdf=render |
id |
doaj-dc0ac0400eb84b1c9b9669fc8650bd6c |
---|---|
record_format |
Article |
spelling |
doaj-dc0ac0400eb84b1c9b9669fc8650bd6c2020-11-25T01:53:32ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01102e011832210.1371/journal.pone.0118322Programmed evolution for optimization of orthogonal metabolic output in bacteria.Todd T EckdahlA Malcolm CampbellLaurie J HeyerJeffrey L PoetDavid N BlauchNicole L SnyderDustin T AtchleyErich J BakerMicah BrownElizabeth C BrunnerSean A CallenJesse S CampbellCaleb J CarrDavid R CarrSpencer A ChadinhaGrace I ChesterJosh ChesterBen R ClarksonKelly E CochranShannon E DohertyCatherine DoyleSarah DwyerLinnea M EdlinRebecca A EvansTaylor FluhartyJanna FrederickJonah Galeota-SprungBetsy L GammonBrandon GrieshaberJessica GronnigerKatelyn GutteridgeJoel HenningsenBradley IsomHannah L ItellErica C KeffelerAndrew J LantzJonathan N LimErin P McGuireAlexander K MooreJerrad MortonMeredith NakanoSara A PearsonVirginia PerkinsPhoebe ParrishClaire E PiersonSachith PolpityaarachchigeMichael J QuaneyAbagael SlatteryKathryn E SmithJackson SpellMorgan SpencerTelavive TayeKamay TruebloodCaroline J VranaE Tucker WhitesidesCurrent use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.http://europepmc.org/articles/PMC4340930?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Todd T Eckdahl A Malcolm Campbell Laurie J Heyer Jeffrey L Poet David N Blauch Nicole L Snyder Dustin T Atchley Erich J Baker Micah Brown Elizabeth C Brunner Sean A Callen Jesse S Campbell Caleb J Carr David R Carr Spencer A Chadinha Grace I Chester Josh Chester Ben R Clarkson Kelly E Cochran Shannon E Doherty Catherine Doyle Sarah Dwyer Linnea M Edlin Rebecca A Evans Taylor Fluharty Janna Frederick Jonah Galeota-Sprung Betsy L Gammon Brandon Grieshaber Jessica Gronniger Katelyn Gutteridge Joel Henningsen Bradley Isom Hannah L Itell Erica C Keffeler Andrew J Lantz Jonathan N Lim Erin P McGuire Alexander K Moore Jerrad Morton Meredith Nakano Sara A Pearson Virginia Perkins Phoebe Parrish Claire E Pierson Sachith Polpityaarachchige Michael J Quaney Abagael Slattery Kathryn E Smith Jackson Spell Morgan Spencer Telavive Taye Kamay Trueblood Caroline J Vrana E Tucker Whitesides |
spellingShingle |
Todd T Eckdahl A Malcolm Campbell Laurie J Heyer Jeffrey L Poet David N Blauch Nicole L Snyder Dustin T Atchley Erich J Baker Micah Brown Elizabeth C Brunner Sean A Callen Jesse S Campbell Caleb J Carr David R Carr Spencer A Chadinha Grace I Chester Josh Chester Ben R Clarkson Kelly E Cochran Shannon E Doherty Catherine Doyle Sarah Dwyer Linnea M Edlin Rebecca A Evans Taylor Fluharty Janna Frederick Jonah Galeota-Sprung Betsy L Gammon Brandon Grieshaber Jessica Gronniger Katelyn Gutteridge Joel Henningsen Bradley Isom Hannah L Itell Erica C Keffeler Andrew J Lantz Jonathan N Lim Erin P McGuire Alexander K Moore Jerrad Morton Meredith Nakano Sara A Pearson Virginia Perkins Phoebe Parrish Claire E Pierson Sachith Polpityaarachchige Michael J Quaney Abagael Slattery Kathryn E Smith Jackson Spell Morgan Spencer Telavive Taye Kamay Trueblood Caroline J Vrana E Tucker Whitesides Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS ONE |
author_facet |
Todd T Eckdahl A Malcolm Campbell Laurie J Heyer Jeffrey L Poet David N Blauch Nicole L Snyder Dustin T Atchley Erich J Baker Micah Brown Elizabeth C Brunner Sean A Callen Jesse S Campbell Caleb J Carr David R Carr Spencer A Chadinha Grace I Chester Josh Chester Ben R Clarkson Kelly E Cochran Shannon E Doherty Catherine Doyle Sarah Dwyer Linnea M Edlin Rebecca A Evans Taylor Fluharty Janna Frederick Jonah Galeota-Sprung Betsy L Gammon Brandon Grieshaber Jessica Gronniger Katelyn Gutteridge Joel Henningsen Bradley Isom Hannah L Itell Erica C Keffeler Andrew J Lantz Jonathan N Lim Erin P McGuire Alexander K Moore Jerrad Morton Meredith Nakano Sara A Pearson Virginia Perkins Phoebe Parrish Claire E Pierson Sachith Polpityaarachchige Michael J Quaney Abagael Slattery Kathryn E Smith Jackson Spell Morgan Spencer Telavive Taye Kamay Trueblood Caroline J Vrana E Tucker Whitesides |
author_sort |
Todd T Eckdahl |
title |
Programmed evolution for optimization of orthogonal metabolic output in bacteria. |
title_short |
Programmed evolution for optimization of orthogonal metabolic output in bacteria. |
title_full |
Programmed evolution for optimization of orthogonal metabolic output in bacteria. |
title_fullStr |
Programmed evolution for optimization of orthogonal metabolic output in bacteria. |
title_full_unstemmed |
Programmed evolution for optimization of orthogonal metabolic output in bacteria. |
title_sort |
programmed evolution for optimization of orthogonal metabolic output in bacteria. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. |
url |
http://europepmc.org/articles/PMC4340930?pdf=render |
work_keys_str_mv |
AT toddteckdahl programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT amalcolmcampbell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT lauriejheyer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jeffreylpoet programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT davidnblauch programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT nicolelsnyder programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT dustintatchley programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT erichjbaker programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT micahbrown programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT elizabethcbrunner programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT seanacallen programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jessescampbell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT calebjcarr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT davidrcarr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT spencerachadinha programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT graceichester programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT joshchester programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT benrclarkson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT kellyecochran programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT shannonedoherty programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT catherinedoyle programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT sarahdwyer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT linneamedlin programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT rebeccaaevans programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT taylorfluharty programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jannafrederick programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jonahgaleotasprung programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT betsylgammon programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT brandongrieshaber programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jessicagronniger programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT katelyngutteridge programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT joelhenningsen programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT bradleyisom programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT hannahlitell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT ericackeffeler programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT andrewjlantz programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jonathannlim programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT erinpmcguire programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT alexanderkmoore programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jerradmorton programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT meredithnakano programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT saraapearson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT virginiaperkins programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT phoebeparrish programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT claireepierson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT sachithpolpityaarachchige programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT michaeljquaney programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT abagaelslattery programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT kathrynesmith programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT jacksonspell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT morganspencer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT telavivetaye programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT kamaytrueblood programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT carolinejvrana programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria AT etuckerwhitesides programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria |
_version_ |
1724990425829212160 |