Programmed evolution for optimization of orthogonal metabolic output in bacteria.

Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacter...

Full description

Bibliographic Details
Main Authors: Todd T Eckdahl, A Malcolm Campbell, Laurie J Heyer, Jeffrey L Poet, David N Blauch, Nicole L Snyder, Dustin T Atchley, Erich J Baker, Micah Brown, Elizabeth C Brunner, Sean A Callen, Jesse S Campbell, Caleb J Carr, David R Carr, Spencer A Chadinha, Grace I Chester, Josh Chester, Ben R Clarkson, Kelly E Cochran, Shannon E Doherty, Catherine Doyle, Sarah Dwyer, Linnea M Edlin, Rebecca A Evans, Taylor Fluharty, Janna Frederick, Jonah Galeota-Sprung, Betsy L Gammon, Brandon Grieshaber, Jessica Gronniger, Katelyn Gutteridge, Joel Henningsen, Bradley Isom, Hannah L Itell, Erica C Keffeler, Andrew J Lantz, Jonathan N Lim, Erin P McGuire, Alexander K Moore, Jerrad Morton, Meredith Nakano, Sara A Pearson, Virginia Perkins, Phoebe Parrish, Claire E Pierson, Sachith Polpityaarachchige, Michael J Quaney, Abagael Slattery, Kathryn E Smith, Jackson Spell, Morgan Spencer, Telavive Taye, Kamay Trueblood, Caroline J Vrana, E Tucker Whitesides
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4340930?pdf=render
id doaj-dc0ac0400eb84b1c9b9669fc8650bd6c
record_format Article
spelling doaj-dc0ac0400eb84b1c9b9669fc8650bd6c2020-11-25T01:53:32ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01102e011832210.1371/journal.pone.0118322Programmed evolution for optimization of orthogonal metabolic output in bacteria.Todd T EckdahlA Malcolm CampbellLaurie J HeyerJeffrey L PoetDavid N BlauchNicole L SnyderDustin T AtchleyErich J BakerMicah BrownElizabeth C BrunnerSean A CallenJesse S CampbellCaleb J CarrDavid R CarrSpencer A ChadinhaGrace I ChesterJosh ChesterBen R ClarksonKelly E CochranShannon E DohertyCatherine DoyleSarah DwyerLinnea M EdlinRebecca A EvansTaylor FluhartyJanna FrederickJonah Galeota-SprungBetsy L GammonBrandon GrieshaberJessica GronnigerKatelyn GutteridgeJoel HenningsenBradley IsomHannah L ItellErica C KeffelerAndrew J LantzJonathan N LimErin P McGuireAlexander K MooreJerrad MortonMeredith NakanoSara A PearsonVirginia PerkinsPhoebe ParrishClaire E PiersonSachith PolpityaarachchigeMichael J QuaneyAbagael SlatteryKathryn E SmithJackson SpellMorgan SpencerTelavive TayeKamay TruebloodCaroline J VranaE Tucker WhitesidesCurrent use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.http://europepmc.org/articles/PMC4340930?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Todd T Eckdahl
A Malcolm Campbell
Laurie J Heyer
Jeffrey L Poet
David N Blauch
Nicole L Snyder
Dustin T Atchley
Erich J Baker
Micah Brown
Elizabeth C Brunner
Sean A Callen
Jesse S Campbell
Caleb J Carr
David R Carr
Spencer A Chadinha
Grace I Chester
Josh Chester
Ben R Clarkson
Kelly E Cochran
Shannon E Doherty
Catherine Doyle
Sarah Dwyer
Linnea M Edlin
Rebecca A Evans
Taylor Fluharty
Janna Frederick
Jonah Galeota-Sprung
Betsy L Gammon
Brandon Grieshaber
Jessica Gronniger
Katelyn Gutteridge
Joel Henningsen
Bradley Isom
Hannah L Itell
Erica C Keffeler
Andrew J Lantz
Jonathan N Lim
Erin P McGuire
Alexander K Moore
Jerrad Morton
Meredith Nakano
Sara A Pearson
Virginia Perkins
Phoebe Parrish
Claire E Pierson
Sachith Polpityaarachchige
Michael J Quaney
Abagael Slattery
Kathryn E Smith
Jackson Spell
Morgan Spencer
Telavive Taye
Kamay Trueblood
Caroline J Vrana
E Tucker Whitesides
spellingShingle Todd T Eckdahl
A Malcolm Campbell
Laurie J Heyer
Jeffrey L Poet
David N Blauch
Nicole L Snyder
Dustin T Atchley
Erich J Baker
Micah Brown
Elizabeth C Brunner
Sean A Callen
Jesse S Campbell
Caleb J Carr
David R Carr
Spencer A Chadinha
Grace I Chester
Josh Chester
Ben R Clarkson
Kelly E Cochran
Shannon E Doherty
Catherine Doyle
Sarah Dwyer
Linnea M Edlin
Rebecca A Evans
Taylor Fluharty
Janna Frederick
Jonah Galeota-Sprung
Betsy L Gammon
Brandon Grieshaber
Jessica Gronniger
Katelyn Gutteridge
Joel Henningsen
Bradley Isom
Hannah L Itell
Erica C Keffeler
Andrew J Lantz
Jonathan N Lim
Erin P McGuire
Alexander K Moore
Jerrad Morton
Meredith Nakano
Sara A Pearson
Virginia Perkins
Phoebe Parrish
Claire E Pierson
Sachith Polpityaarachchige
Michael J Quaney
Abagael Slattery
Kathryn E Smith
Jackson Spell
Morgan Spencer
Telavive Taye
Kamay Trueblood
Caroline J Vrana
E Tucker Whitesides
Programmed evolution for optimization of orthogonal metabolic output in bacteria.
PLoS ONE
author_facet Todd T Eckdahl
A Malcolm Campbell
Laurie J Heyer
Jeffrey L Poet
David N Blauch
Nicole L Snyder
Dustin T Atchley
Erich J Baker
Micah Brown
Elizabeth C Brunner
Sean A Callen
Jesse S Campbell
Caleb J Carr
David R Carr
Spencer A Chadinha
Grace I Chester
Josh Chester
Ben R Clarkson
Kelly E Cochran
Shannon E Doherty
Catherine Doyle
Sarah Dwyer
Linnea M Edlin
Rebecca A Evans
Taylor Fluharty
Janna Frederick
Jonah Galeota-Sprung
Betsy L Gammon
Brandon Grieshaber
Jessica Gronniger
Katelyn Gutteridge
Joel Henningsen
Bradley Isom
Hannah L Itell
Erica C Keffeler
Andrew J Lantz
Jonathan N Lim
Erin P McGuire
Alexander K Moore
Jerrad Morton
Meredith Nakano
Sara A Pearson
Virginia Perkins
Phoebe Parrish
Claire E Pierson
Sachith Polpityaarachchige
Michael J Quaney
Abagael Slattery
Kathryn E Smith
Jackson Spell
Morgan Spencer
Telavive Taye
Kamay Trueblood
Caroline J Vrana
E Tucker Whitesides
author_sort Todd T Eckdahl
title Programmed evolution for optimization of orthogonal metabolic output in bacteria.
title_short Programmed evolution for optimization of orthogonal metabolic output in bacteria.
title_full Programmed evolution for optimization of orthogonal metabolic output in bacteria.
title_fullStr Programmed evolution for optimization of orthogonal metabolic output in bacteria.
title_full_unstemmed Programmed evolution for optimization of orthogonal metabolic output in bacteria.
title_sort programmed evolution for optimization of orthogonal metabolic output in bacteria.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.
url http://europepmc.org/articles/PMC4340930?pdf=render
work_keys_str_mv AT toddteckdahl programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT amalcolmcampbell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT lauriejheyer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jeffreylpoet programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT davidnblauch programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT nicolelsnyder programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT dustintatchley programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT erichjbaker programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT micahbrown programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT elizabethcbrunner programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT seanacallen programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jessescampbell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT calebjcarr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT davidrcarr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT spencerachadinha programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT graceichester programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT joshchester programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT benrclarkson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT kellyecochran programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT shannonedoherty programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT catherinedoyle programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT sarahdwyer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT linneamedlin programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT rebeccaaevans programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT taylorfluharty programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jannafrederick programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jonahgaleotasprung programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT betsylgammon programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT brandongrieshaber programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jessicagronniger programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT katelyngutteridge programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT joelhenningsen programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT bradleyisom programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT hannahlitell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT ericackeffeler programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT andrewjlantz programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jonathannlim programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT erinpmcguire programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT alexanderkmoore programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jerradmorton programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT meredithnakano programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT saraapearson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT virginiaperkins programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT phoebeparrish programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT claireepierson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT sachithpolpityaarachchige programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT michaeljquaney programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT abagaelslattery programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT kathrynesmith programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT jacksonspell programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT morganspencer programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT telavivetaye programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT kamaytrueblood programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT carolinejvrana programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT etuckerwhitesides programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
_version_ 1724990425829212160