How Well Can We Extract the Permanent Displacement from Low-Cost MEMS Accelerometers?

Following the recent establishment of a high-density seismic network equipped with low-cost micro-electro-mechanical system (MEMS) P-wave-alert-device (P-Alert) by the earthquake early warning (EEW) research group at the National Taiwan University, a large quantity of strong-motion records from mode...

Full description

Bibliographic Details
Main Authors: Jyh Cherng Jan, Wei-An Chao, Yih-Min Wu, Chien-Chih Chen, Cheng-Horng Lin
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/11/2643
Description
Summary:Following the recent establishment of a high-density seismic network equipped with low-cost micro-electro-mechanical system (MEMS) P-wave-alert-device (P-Alert) by the earthquake early warning (EEW) research group at the National Taiwan University, a large quantity of strong-motion records from moderate-magnitude earthquakes (ML > 6) around Taiwan has been accumulated. Using a data preprocessing scheme to recover the dynamic average embedded within the P-Alert data, we adopted an automatic baseline correction approach for the P-Alert accelerograms to determine the coseismic deformation (Cd). Comparisons between the Cd values determined using global positioning system (GPS) data, strong-motion records from the P-Alert network, and data from the Taiwan Strong Motion Instrumentation Program (TSMIP) demonstrates that the near-real-time determination of Cd values (>2 cm), which provide crucial information for seismic hazard mitigation, is possible using records from low-cost MEMS accelerometers.
ISSN:1424-8220