Broadband Dual Circularly Polarized Magnetoelectric Dipole Antenna Fed by a Miniaturized Six-Branch Hybrid Coupler

A broadband dual circularly polarized magnetoelectric dipole antenna (MEDA) fed by a miniaturized six-branch hybrid coupler (SBHC) is presented in this paper. First, a dual linearly polarized MEDA with a bandwidth of 73.3% is developed based on the previous design with a bandwidth of 52%. The SBHC,...

Full description

Bibliographic Details
Main Authors: Changhong Zhang, Xianling Liang, Junping Geng, Ronghong Jin
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2016/1385927
Description
Summary:A broadband dual circularly polarized magnetoelectric dipole antenna (MEDA) fed by a miniaturized six-branch hybrid coupler (SBHC) is presented in this paper. First, a dual linearly polarized MEDA with a bandwidth of 73.3% is developed based on the previous design with a bandwidth of 52%. The SBHC, with a miniaturized size of 53%, is designed on a printed circuit board underneath the ground of the MEDA, which possesses an efficient bandwidth of 80.7% to generate the antenna for dual circular polarization. Measurement results show that the proposed dual circularly polarized MEDA achieves an impedance bandwidth of 84.5%, an axial-ratio bandwidth of 81.8%, and a nearly symmetrical, stable unidirectional radiation pattern with an average gain of 8 dBic over its impedance bandwidth.
ISSN:1687-5869
1687-5877