Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler
Improving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/6/1255 |
id |
doaj-dbc32af7a3184a13b9b779d26477fc91 |
---|---|
record_format |
Article |
spelling |
doaj-dbc32af7a3184a13b9b779d26477fc912020-11-25T03:10:11ZengMDPI AGPolymers2073-43602020-05-01121255125510.3390/polym12061255Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio FillerBo Zhang0Yunmin Liang1Biwei Liu2Wei Liu3Zhichun Liu4School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, ChinaSchool of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, ChinaSchool of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, ChinaSchool of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, ChinaSchool of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, ChinaImproving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing high length-diameter ratio filler such as carbon nanotube (CNT), boron nitride (BN) nanotube, and copper (Cu) nanowire, in the woven polymer matrix to meet the purpose. Through molecular dynamics (MD) simulation, the thermal properties of three woven polymers including woven polyethylene (PE), woven poly (p-phenylene) (PPP), and woven polyacetylene (PA) are investigated. Besides, using woven PE as a polymer matrix, three polymer nanocomposites, namely PE-CNT, PE-BN, and PE-Cu, are constructed by mixing CNT, BN nanotube, and Cu nanowire respectively, whose thermo-mechanical characteristics are compared via MD simulation. Morphology and phonons spectra analysis are conducted to reveal the underlying mechanisms. Furthermore, impacts of electron-phonon coupling and electrical field on the thermal conductivity of PE-Cu are uncovered via two temperature model MD simulation. Classical theoretical models are modified to predict the effects of filler and matrix on the thermal conductivity of polymer nanocomposites. This work can provide useful guidelines for designing thermally conductive bulk polymers and polymer nanocomposites.https://www.mdpi.com/2073-4360/12/6/1255thermo-mechanical propertypolymer morphologyphononsmolecular dynamics simulationweavingmixing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bo Zhang Yunmin Liang Biwei Liu Wei Liu Zhichun Liu |
spellingShingle |
Bo Zhang Yunmin Liang Biwei Liu Wei Liu Zhichun Liu Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler Polymers thermo-mechanical property polymer morphology phonons molecular dynamics simulation weaving mixing |
author_facet |
Bo Zhang Yunmin Liang Biwei Liu Wei Liu Zhichun Liu |
author_sort |
Bo Zhang |
title |
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_short |
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_full |
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_fullStr |
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_full_unstemmed |
Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler |
title_sort |
enhancing the thermo-mechanical property of polymer by weaving and mixing high length–diameter ratio filler |
publisher |
MDPI AG |
series |
Polymers |
issn |
2073-4360 |
publishDate |
2020-05-01 |
description |
Improving thermo-mechanical characteristics of polymers can efficiently promote their applications in heat exchangers and thermal management. However, a feasible way to enhance the thermo-mechanical property of bulk polymers at low filler content still remains to be explored. Here, we propose mixing high length-diameter ratio filler such as carbon nanotube (CNT), boron nitride (BN) nanotube, and copper (Cu) nanowire, in the woven polymer matrix to meet the purpose. Through molecular dynamics (MD) simulation, the thermal properties of three woven polymers including woven polyethylene (PE), woven poly (p-phenylene) (PPP), and woven polyacetylene (PA) are investigated. Besides, using woven PE as a polymer matrix, three polymer nanocomposites, namely PE-CNT, PE-BN, and PE-Cu, are constructed by mixing CNT, BN nanotube, and Cu nanowire respectively, whose thermo-mechanical characteristics are compared via MD simulation. Morphology and phonons spectra analysis are conducted to reveal the underlying mechanisms. Furthermore, impacts of electron-phonon coupling and electrical field on the thermal conductivity of PE-Cu are uncovered via two temperature model MD simulation. Classical theoretical models are modified to predict the effects of filler and matrix on the thermal conductivity of polymer nanocomposites. This work can provide useful guidelines for designing thermally conductive bulk polymers and polymer nanocomposites. |
topic |
thermo-mechanical property polymer morphology phonons molecular dynamics simulation weaving mixing |
url |
https://www.mdpi.com/2073-4360/12/6/1255 |
work_keys_str_mv |
AT bozhang enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT yunminliang enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT biweiliu enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT weiliu enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller AT zhichunliu enhancingthethermomechanicalpropertyofpolymerbyweavingandmixinghighlengthdiameterratiofiller |
_version_ |
1724660046861697024 |