Convex Combinations of Minimal Graphs
Given a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combinati...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2012/724268 |
id |
doaj-dbbf77a99d1d42f7bb22b13bb19966bf |
---|---|
record_format |
Article |
spelling |
doaj-dbbf77a99d1d42f7bb22b13bb19966bf2020-11-25T00:52:31ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/724268724268Convex Combinations of Minimal GraphsMichael Dorff0Ryan Viertel1Magdalena Wołoszkiewicz2Department of Mathematics, Brigham Young University, Provo, UT 84602, USADepartment of Mathematics, Brigham Young University, Provo, UT 84602, USADepartment of Mathematics, Maria Curie-Sklodowska University, 20-031 Lublin, PolandGiven a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combination of Scherk's doubly periodic surface with the catenoid and Enneper's surface, respectively.http://dx.doi.org/10.1155/2012/724268 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michael Dorff Ryan Viertel Magdalena Wołoszkiewicz |
spellingShingle |
Michael Dorff Ryan Viertel Magdalena Wołoszkiewicz Convex Combinations of Minimal Graphs International Journal of Mathematics and Mathematical Sciences |
author_facet |
Michael Dorff Ryan Viertel Magdalena Wołoszkiewicz |
author_sort |
Michael Dorff |
title |
Convex Combinations of Minimal Graphs |
title_short |
Convex Combinations of Minimal Graphs |
title_full |
Convex Combinations of Minimal Graphs |
title_fullStr |
Convex Combinations of Minimal Graphs |
title_full_unstemmed |
Convex Combinations of Minimal Graphs |
title_sort |
convex combinations of minimal graphs |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
2012-01-01 |
description |
Given a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combination of Scherk's doubly periodic surface with the catenoid and Enneper's surface, respectively. |
url |
http://dx.doi.org/10.1155/2012/724268 |
work_keys_str_mv |
AT michaeldorff convexcombinationsofminimalgraphs AT ryanviertel convexcombinationsofminimalgraphs AT magdalenawołoszkiewicz convexcombinationsofminimalgraphs |
_version_ |
1725242055929626624 |