Convex Combinations of Minimal Graphs

Given a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combinati...

Full description

Bibliographic Details
Main Authors: Michael Dorff, Ryan Viertel, Magdalena Wołoszkiewicz
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/724268
id doaj-dbbf77a99d1d42f7bb22b13bb19966bf
record_format Article
spelling doaj-dbbf77a99d1d42f7bb22b13bb19966bf2020-11-25T00:52:31ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/724268724268Convex Combinations of Minimal GraphsMichael Dorff0Ryan Viertel1Magdalena Wołoszkiewicz2Department of Mathematics, Brigham Young University, Provo, UT 84602, USADepartment of Mathematics, Brigham Young University, Provo, UT 84602, USADepartment of Mathematics, Maria Curie-Sklodowska University, 20-031 Lublin, PolandGiven a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combination of Scherk's doubly periodic surface with the catenoid and Enneper's surface, respectively.http://dx.doi.org/10.1155/2012/724268
collection DOAJ
language English
format Article
sources DOAJ
author Michael Dorff
Ryan Viertel
Magdalena Wołoszkiewicz
spellingShingle Michael Dorff
Ryan Viertel
Magdalena Wołoszkiewicz
Convex Combinations of Minimal Graphs
International Journal of Mathematics and Mathematical Sciences
author_facet Michael Dorff
Ryan Viertel
Magdalena Wołoszkiewicz
author_sort Michael Dorff
title Convex Combinations of Minimal Graphs
title_short Convex Combinations of Minimal Graphs
title_full Convex Combinations of Minimal Graphs
title_fullStr Convex Combinations of Minimal Graphs
title_full_unstemmed Convex Combinations of Minimal Graphs
title_sort convex combinations of minimal graphs
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2012-01-01
description Given a collection of minimal graphs, 𝑀1,𝑀2,…,𝑀𝑛, with isothermal parametrizations in terms of the Gauss map and height differential, we give sufficient conditions on 𝑀1,𝑀2,…,𝑀𝑛 so that a convex combination of them will be a minimal graph. We will then provide two examples, taking a convex combination of Scherk's doubly periodic surface with the catenoid and Enneper's surface, respectively.
url http://dx.doi.org/10.1155/2012/724268
work_keys_str_mv AT michaeldorff convexcombinationsofminimalgraphs
AT ryanviertel convexcombinationsofminimalgraphs
AT magdalenawołoszkiewicz convexcombinationsofminimalgraphs
_version_ 1725242055929626624