Evolution and impact of bias in human and machine learning algorithm interaction.

Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born fro...

Full description

Bibliographic Details
Main Authors: Wenlong Sun, Olfa Nasraoui, Patrick Shafto
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0235502
id doaj-dba82a277c984d5c89177ea56af043c0
record_format Article
spelling doaj-dba82a277c984d5c89177ea56af043c02021-03-03T21:58:40ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01158e023550210.1371/journal.pone.0235502Evolution and impact of bias in human and machine learning algorithm interaction.Wenlong SunOlfa NasraouiPatrick ShaftoTraditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.https://doi.org/10.1371/journal.pone.0235502
collection DOAJ
language English
format Article
sources DOAJ
author Wenlong Sun
Olfa Nasraoui
Patrick Shafto
spellingShingle Wenlong Sun
Olfa Nasraoui
Patrick Shafto
Evolution and impact of bias in human and machine learning algorithm interaction.
PLoS ONE
author_facet Wenlong Sun
Olfa Nasraoui
Patrick Shafto
author_sort Wenlong Sun
title Evolution and impact of bias in human and machine learning algorithm interaction.
title_short Evolution and impact of bias in human and machine learning algorithm interaction.
title_full Evolution and impact of bias in human and machine learning algorithm interaction.
title_fullStr Evolution and impact of bias in human and machine learning algorithm interaction.
title_full_unstemmed Evolution and impact of bias in human and machine learning algorithm interaction.
title_sort evolution and impact of bias in human and machine learning algorithm interaction.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2020-01-01
description Traditionally, machine learning algorithms relied on reliable labels from experts to build predictions. More recently however, algorithms have been receiving data from the general population in the form of labeling, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algorithms can also make biased predictions, leading to what is now known as algorithmic bias. On the other hand, human's reaction to the output of machine learning methods with algorithmic bias worsen the situations by making decision based on biased information, which will probably be consumed by algorithms later. Some recent research has focused on the ethical and moral implication of machine learning algorithmic bias on society. However, most research has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and iterative properties of bias. We argue that algorithmic bias interacts with humans in an iterative manner, which has a long-term effect on algorithms' performance. For this purpose, we present an iterated-learning framework that is inspired from human language evolution to study the interaction between machine learning algorithms and humans. Our goal is to study two sources of bias that interact: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). We investigate three forms of iterated algorithmic bias (personalization filter, active learning, and random) and how they affect the performance of machine learning algorithms by formulating research questions about the impact of each type of bias. Based on statistical analyses of the results of several controlled experiments, we found that the three different iterated bias modes, as well as initial training data class imbalance and human action, do affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to more inequality in estimated relevance and to a limited human ability to discover relevant data. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5 and who thus risk being hidden from humans) amounted to 4% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75% of the relevant testing set.
url https://doi.org/10.1371/journal.pone.0235502
work_keys_str_mv AT wenlongsun evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction
AT olfanasraoui evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction
AT patrickshafto evolutionandimpactofbiasinhumanandmachinelearningalgorithminteraction
_version_ 1714814122517856256