A conjecture of Schoenberg

<p/> <p>For an arbitrary polynomial <inline-formula><graphic file="1029-242X-1999-838171-i1.gif"/></inline-formula> with the sum of all zeros equal to zero, <inline-formula><graphic file="1029-242X-1999-838171-i2.gif"/></inline-formula...

Full description

Bibliographic Details
Main Authors: Ivanov KG, Sharma A, de Bruin MG
Format: Article
Language:English
Published: SpringerOpen 1999-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/4/838171
Description
Summary:<p/> <p>For an arbitrary polynomial <inline-formula><graphic file="1029-242X-1999-838171-i1.gif"/></inline-formula> with the sum of all zeros equal to zero, <inline-formula><graphic file="1029-242X-1999-838171-i2.gif"/></inline-formula>, the quadratic mean radius is defined by <inline-formula><graphic file="1029-242X-1999-838171-i3.gif"/></inline-formula> Schoenberg conjectured that the quadratic mean radii of <inline-formula><graphic file="1029-242X-1999-838171-i4.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-838171-i5.gif"/></inline-formula> satisfy <inline-formula><graphic file="1029-242X-1999-838171-i6.gif"/></inline-formula>where equality holds if and only if the zeros all lie on a straight line through the origin in the complex plane (this includes the simple case when all zeros are real) and proved this conjecture for <inline-formula><graphic file="1029-242X-1999-838171-i7.gif"/></inline-formula> and for polynomials of the form <inline-formula><graphic file="1029-242X-1999-838171-i8.gif"/></inline-formula>.</p> <p>It is the purpose of this paper to prove the conjecture for three other classes of polynomials. One of these classes reduces for a special choice of the parameters to a previous extension due to the second and third authors.</p>
ISSN:1025-5834
1029-242X