A Practical Approach to Residential Appliances on-Line Anomaly Detection: A Case Study of Standard and Smart Refrigerators

Anomaly detection is a significant application of residential appliances load monitoring systems. As an essential prerequisite of load diagnosis services, anomaly detection is critical to energy saving and occupant comfort actualization. Notwithstanding, the investigation into diagnosis of household...

Full description

Bibliographic Details
Main Authors: Sayed Saeed Hosseini, Kodjo Agbossou, Sousso Kelouwani, Alben Cardenas, Nilson Henao
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9044375/
Description
Summary:Anomaly detection is a significant application of residential appliances load monitoring systems. As an essential prerequisite of load diagnosis services, anomaly detection is critical to energy saving and occupant comfort actualization. Notwithstanding, the investigation into diagnosis of household anomalous appliances has not been decently taken into consideration. This paper presents an extensive study about operation-time anomaly detection of household devices particularly, refrigerators, in terms of appliances candidate, by utilizing their energy consumption data. Energy as a quantitative property of electrical loads, is a reliable information for a robust diagnosis. Additionally, it is very practical since it is low-priced to measure and definite to interpret. Subsequently, an on-line anomaly detection approach is proposed to effectively determine the anomalous operation of the household appliances candidate. The proposed approach is capable of continuously monitoring energy consumption and providing dynamic information for anomaly detection algorithms. A machine learning-based technique is employed to construct efficient models of appliances normal behavior with application to operation-time anomaly detection. The performance of the suggested approach is evaluated through a set of diagnostic tests, by utilizing normal and anomalous data of targeted devices, measured by an acquisition system. In addition, a comparison analysis is provided in order to further examine the effectiveness of the developed mechanism by exploiting a public database. Moreover, this study elaborates sensible remarks on an effective management of anomaly detection and diagnosis decision phases, pivotal to correctly recognition of a faulty/abnormal operation. Indeed, through experimental results of case studies, this work assists in the development of a load monitoring and anomaly detection system with practical implementation.
ISSN:2169-3536