Positive solutions for anisotropic discrete boundary-value problems

Using mountain pass arguments and the Karsuh-Kuhn-Tucker Theorem, we prove the existence of at least two positive solution for anisotropic discrete Dirichlet boundary-value problems. Our results generalized and improve those in [16].

Bibliographic Details
Main Authors: Marek Galewski, Szymon Glab, Renata Wieteska
Format: Article
Language:English
Published: Texas State University 2013-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/32/abstr.html
id doaj-db9c498981ae4502b90f11b0ed2cf96f
record_format Article
spelling doaj-db9c498981ae4502b90f11b0ed2cf96f2020-11-24T22:29:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-01-01201332,19Positive solutions for anisotropic discrete boundary-value problemsMarek GalewskiSzymon GlabRenata WieteskaUsing mountain pass arguments and the Karsuh-Kuhn-Tucker Theorem, we prove the existence of at least two positive solution for anisotropic discrete Dirichlet boundary-value problems. Our results generalized and improve those in [16]. http://ejde.math.txstate.edu/Volumes/2013/32/abstr.htmlDiscrete boundary value problemmountain pass theoremvariational methodsKarush-Kuhn-Tucker Theorempositive solutionanisotropic problem
collection DOAJ
language English
format Article
sources DOAJ
author Marek Galewski
Szymon Glab
Renata Wieteska
spellingShingle Marek Galewski
Szymon Glab
Renata Wieteska
Positive solutions for anisotropic discrete boundary-value problems
Electronic Journal of Differential Equations
Discrete boundary value problem
mountain pass theorem
variational methods
Karush-Kuhn-Tucker Theorem
positive solution
anisotropic problem
author_facet Marek Galewski
Szymon Glab
Renata Wieteska
author_sort Marek Galewski
title Positive solutions for anisotropic discrete boundary-value problems
title_short Positive solutions for anisotropic discrete boundary-value problems
title_full Positive solutions for anisotropic discrete boundary-value problems
title_fullStr Positive solutions for anisotropic discrete boundary-value problems
title_full_unstemmed Positive solutions for anisotropic discrete boundary-value problems
title_sort positive solutions for anisotropic discrete boundary-value problems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2013-01-01
description Using mountain pass arguments and the Karsuh-Kuhn-Tucker Theorem, we prove the existence of at least two positive solution for anisotropic discrete Dirichlet boundary-value problems. Our results generalized and improve those in [16].
topic Discrete boundary value problem
mountain pass theorem
variational methods
Karush-Kuhn-Tucker Theorem
positive solution
anisotropic problem
url http://ejde.math.txstate.edu/Volumes/2013/32/abstr.html
work_keys_str_mv AT marekgalewski positivesolutionsforanisotropicdiscreteboundaryvalueproblems
AT szymonglab positivesolutionsforanisotropicdiscreteboundaryvalueproblems
AT renatawieteska positivesolutionsforanisotropicdiscreteboundaryvalueproblems
_version_ 1725743729481875456