A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems
Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life en...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/20/22/6670 |
id |
doaj-db97630821014042a1ea72de4daff101 |
---|---|
record_format |
Article |
spelling |
doaj-db97630821014042a1ea72de4daff1012020-11-25T04:05:31ZengMDPI AGSensors1424-82202020-11-01206670667010.3390/s20226670A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection SystemsAhmad Jalal0Majid Ali Khan Quaid1Sheikh Badar ud din Tahir2Kibum Kim3Department of Computer Science, Air University, Islamabad 44000, PakistanDepartment of Computer Science, Air University, Islamabad 44000, PakistanDepartment of Computer Science, Air University, Islamabad 44000, PakistanDepartment of Human-Computer Interaction, Hanyang University, Ansan 15588, KoreaNowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life environments. The purpose of this paper is to report on recent developments and to project future advances regarding wearable sensor systems for the sustainable monitoring and recording of human life-logs. On the basis of this survey, we propose a model that is designed to retrieve better information during physical activities in indoor and outdoor environments in order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical and non-statistical features for the recognition of different activity patterns using wearable inertial sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal magnitude, positive/negative peaks and position direction to explore signal orientation changes, position differentiation, temporal variation and optimal changes among coordinates. These features are processed by a genetic algorithm for the selection and classification of inertial signals to learn and recognize abnormal human movement. Our model was experimentally evaluated on four benchmark datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show that the proposed feature extraction strategy outperformed others, achieving an improved recognition accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and SMotion datasets were applied.https://www.mdpi.com/1424-8220/20/22/6670accelerometeractivity detection systemhealthcareinertial sensorsreweighted genetic algorithm |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ahmad Jalal Majid Ali Khan Quaid Sheikh Badar ud din Tahir Kibum Kim |
spellingShingle |
Ahmad Jalal Majid Ali Khan Quaid Sheikh Badar ud din Tahir Kibum Kim A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems Sensors accelerometer activity detection system healthcare inertial sensors reweighted genetic algorithm |
author_facet |
Ahmad Jalal Majid Ali Khan Quaid Sheikh Badar ud din Tahir Kibum Kim |
author_sort |
Ahmad Jalal |
title |
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_short |
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_full |
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_fullStr |
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_full_unstemmed |
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_sort |
study of accelerometer and gyroscope measurements in physical life-log activities detection systems |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2020-11-01 |
description |
Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life environments. The purpose of this paper is to report on recent developments and to project future advances regarding wearable sensor systems for the sustainable monitoring and recording of human life-logs. On the basis of this survey, we propose a model that is designed to retrieve better information during physical activities in indoor and outdoor environments in order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical and non-statistical features for the recognition of different activity patterns using wearable inertial sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal magnitude, positive/negative peaks and position direction to explore signal orientation changes, position differentiation, temporal variation and optimal changes among coordinates. These features are processed by a genetic algorithm for the selection and classification of inertial signals to learn and recognize abnormal human movement. Our model was experimentally evaluated on four benchmark datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show that the proposed feature extraction strategy outperformed others, achieving an improved recognition accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and SMotion datasets were applied. |
topic |
accelerometer activity detection system healthcare inertial sensors reweighted genetic algorithm |
url |
https://www.mdpi.com/1424-8220/20/22/6670 |
work_keys_str_mv |
AT ahmadjalal astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT majidalikhanquaid astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT sheikhbadaruddintahir astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT kibumkim astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT ahmadjalal studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT majidalikhanquaid studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT sheikhbadaruddintahir studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT kibumkim studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems |
_version_ |
1724433465829490688 |