Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains

In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables i...

Full description

Bibliographic Details
Main Authors: P. P. Matus, A. N. Zyl
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2000-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9952
id doaj-db7c5016ff804298b90ab75cc723dff0
record_format Article
spelling doaj-db7c5016ff804298b90ab75cc723dff02021-07-02T10:07:41ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102000-12-015110.3846/13926292.2000.9637136Difference schemes of high order accuracy for mathematical physics problems in arbitrary domainsP. P. Matus0A. N. Zyl1Institute of Mathematics , NASB , Surganov St. 11, Minsk, 220072, BelarusInstitute of Mathematics , NASB , Surganov St. 11, Minsk, 220072, Belarus In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables is achieved near‐boundary nodes. No increase of a standard grid scheme template is required. A priori estimates of the stability are obtained. Didelio tikslumo baigtinių skirtumų schemos Santrauka Darbe nagrinejami matematines fizikos uždaviniai, kai apibrežimo srities kontūras yra bet kokia glodi uždara kreive. Ši sritis pakeičiama tolygiu stačiakampiu tinklu. Panaudojant specialias aproksimavimo formules ir pasienio taškuose aproksimacijos paklaidos eile yra antroji. Svarbi naujojo algoritmo savybe yra tai, kad visuose taškuose naudojamas toks pat diskrečiojo tinklo šablonas. Irodomi aprioriniai stabilumo iverčiai ir ivertinamas diskrečiojo sprendinio konvergavimo greitis. Pateikti skaičiavimo eksperimento, kuriame naujoji schema palyginama su dviem kitomis žinomomis baigtiniu skirtumu schemomis, rezultatai. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9952-
collection DOAJ
language English
format Article
sources DOAJ
author P. P. Matus
A. N. Zyl
spellingShingle P. P. Matus
A. N. Zyl
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
Mathematical Modelling and Analysis
-
author_facet P. P. Matus
A. N. Zyl
author_sort P. P. Matus
title Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
title_short Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
title_full Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
title_fullStr Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
title_full_unstemmed Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
title_sort difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2000-12-01
description In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables is achieved near‐boundary nodes. No increase of a standard grid scheme template is required. A priori estimates of the stability are obtained. Didelio tikslumo baigtinių skirtumų schemos Santrauka Darbe nagrinejami matematines fizikos uždaviniai, kai apibrežimo srities kontūras yra bet kokia glodi uždara kreive. Ši sritis pakeičiama tolygiu stačiakampiu tinklu. Panaudojant specialias aproksimavimo formules ir pasienio taškuose aproksimacijos paklaidos eile yra antroji. Svarbi naujojo algoritmo savybe yra tai, kad visuose taškuose naudojamas toks pat diskrečiojo tinklo šablonas. Irodomi aprioriniai stabilumo iverčiai ir ivertinamas diskrečiojo sprendinio konvergavimo greitis. Pateikti skaičiavimo eksperimento, kuriame naujoji schema palyginama su dviem kitomis žinomomis baigtiniu skirtumu schemomis, rezultatai. First Published Online: 14 Oct 2010
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9952
work_keys_str_mv AT ppmatus differenceschemesofhighorderaccuracyformathematicalphysicsproblemsinarbitrarydomains
AT anzyl differenceschemesofhighorderaccuracyformathematicalphysicsproblemsinarbitrarydomains
_version_ 1721332385338884096