Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains
In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables i...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2000-12-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9952 |
id |
doaj-db7c5016ff804298b90ab75cc723dff0 |
---|---|
record_format |
Article |
spelling |
doaj-db7c5016ff804298b90ab75cc723dff02021-07-02T10:07:41ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102000-12-015110.3846/13926292.2000.9637136Difference schemes of high order accuracy for mathematical physics problems in arbitrary domainsP. P. Matus0A. N. Zyl1Institute of Mathematics , NASB , Surganov St. 11, Minsk, 220072, BelarusInstitute of Mathematics , NASB , Surganov St. 11, Minsk, 220072, Belarus In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables is achieved near‐boundary nodes. No increase of a standard grid scheme template is required. A priori estimates of the stability are obtained. Didelio tikslumo baigtinių skirtumų schemos Santrauka Darbe nagrinejami matematines fizikos uždaviniai, kai apibrežimo srities kontūras yra bet kokia glodi uždara kreive. Ši sritis pakeičiama tolygiu stačiakampiu tinklu. Panaudojant specialias aproksimavimo formules ir pasienio taškuose aproksimacijos paklaidos eile yra antroji. Svarbi naujojo algoritmo savybe yra tai, kad visuose taškuose naudojamas toks pat diskrečiojo tinklo šablonas. Irodomi aprioriniai stabilumo iverčiai ir ivertinamas diskrečiojo sprendinio konvergavimo greitis. Pateikti skaičiavimo eksperimento, kuriame naujoji schema palyginama su dviem kitomis žinomomis baigtiniu skirtumu schemomis, rezultatai. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9952- |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P. P. Matus A. N. Zyl |
spellingShingle |
P. P. Matus A. N. Zyl Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains Mathematical Modelling and Analysis - |
author_facet |
P. P. Matus A. N. Zyl |
author_sort |
P. P. Matus |
title |
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
title_short |
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
title_full |
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
title_fullStr |
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
title_full_unstemmed |
Difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
title_sort |
difference schemes of high order accuracy for mathematical physics problems in arbitrary domains |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
2000-12-01 |
description |
In the present paper the difference schemes of high order accuracy for two‐dimensional equations of mathematical physics in an arbitrary domain are constructed. The computational domain is covered by a uniform rectangular grid. The second order accuracy of local approximation by spatial variables is achieved near‐boundary nodes. No increase of a standard grid scheme template is required. A priori estimates of the stability are obtained.
Didelio tikslumo baigtinių skirtumų schemos
Santrauka
Darbe nagrinejami matematines fizikos uždaviniai, kai apibrežimo srities kontūras yra bet kokia glodi uždara kreive. Ši sritis pakeičiama tolygiu stačiakampiu tinklu. Panaudojant specialias aproksimavimo formules ir pasienio taškuose aproksimacijos paklaidos eile yra antroji. Svarbi naujojo algoritmo savybe yra tai, kad visuose taškuose naudojamas toks pat diskrečiojo tinklo šablonas. Irodomi aprioriniai stabilumo iverčiai ir ivertinamas diskrečiojo sprendinio konvergavimo greitis. Pateikti skaičiavimo eksperimento, kuriame naujoji schema palyginama su dviem kitomis žinomomis baigtiniu skirtumu schemomis, rezultatai.
First Published Online: 14 Oct 2010
|
topic |
- |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9952 |
work_keys_str_mv |
AT ppmatus differenceschemesofhighorderaccuracyformathematicalphysicsproblemsinarbitrarydomains AT anzyl differenceschemesofhighorderaccuracyformathematicalphysicsproblemsinarbitrarydomains |
_version_ |
1721332385338884096 |