Costs and Benefits of Including Inactivated in Addition to Oral Poliovirus Vaccine in Outbreak Response After Cessation of Oral Poliovirus Vaccine Use

Background: After stopping serotype 2–containing oral poliovirus vaccine use, serotype 2 poliovirus outbreaks may still occur and require outbreak response supplemental immunization activities (oSIAs). Current oSIA plans include the use of both serotype 2 monovalent oral poliovirus vaccine (mOPV2) a...

Full description

Bibliographic Details
Main Authors: Radboud J. Duintjer Tebbens PhD, Kimberly M. Thompson ScD
Format: Article
Language:English
Published: SAGE Publishing 2017-03-01
Series:MDM Policy & Practice
Online Access:https://doi.org/10.1177/2381468317697002
Description
Summary:Background: After stopping serotype 2–containing oral poliovirus vaccine use, serotype 2 poliovirus outbreaks may still occur and require outbreak response supplemental immunization activities (oSIAs). Current oSIA plans include the use of both serotype 2 monovalent oral poliovirus vaccine (mOPV2) and inactivated poliovirus vaccine (IPV). Methods: We used an existing model to compare the effectiveness of mOPV2 oSIAs with or without IPV in response to a hypothetical postcessation serotype 2 outbreak in northwest Nigeria. We considered strategies that co-administer IPV with mOPV2, use IPV only for older age groups, or use only IPV during at least one oSIA. We considered the cost and supply implications and estimated from a societal perspective the incremental cost-effectiveness and incremental net benefits of adding IPV to oSIAs in the context of this hypothetical outbreak in 2017. Results: Adding IPV to the first or second oSIA resulted in a 4% to 6% reduction in expected polio cases compared to exclusive mOPV2 oSIAs. We found the greatest benefit of IPV use if added preemptively as a ring around the initial oSIA target population, and negligible benefit if added to later oSIAs or older age groups. We saw an increase in expected polio cases if IPV replaced mOPV2 during an oSIA. None of the oSIA strategies that included IPV for this outbreak represented a cost-effective or net beneficial intervention compared to reliance on mOPV2 only. Conclusions: While adding IPV to oSIAs results in marginal improvements in performance, the poor cost-effectiveness and current limited IPV supply make it economically unattractive for high-risk settings in which IPV does not significantly affect transmission.
ISSN:2381-4683