Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
The pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measu...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/6/4/114 |
id |
doaj-db768f6d7a2e4228855eac4644b135c3 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elsa Fonseca Paulo Fiadeiro Renato Gomes Angel Sanchez Trancon António Baptista Pedro Serra |
spellingShingle |
Elsa Fonseca Paulo Fiadeiro Renato Gomes Angel Sanchez Trancon António Baptista Pedro Serra Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence Photonics pupil size cataract surgery pseudophakic ocular accommodation visual assessment visual optics optical quality eye model |
author_facet |
Elsa Fonseca Paulo Fiadeiro Renato Gomes Angel Sanchez Trancon António Baptista Pedro Serra |
author_sort |
Elsa Fonseca |
title |
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence |
title_short |
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence |
title_full |
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence |
title_fullStr |
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence |
title_full_unstemmed |
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence |
title_sort |
pupil function in pseudophakia: proximal miosis behavior and optical influence |
publisher |
MDPI AG |
series |
Photonics |
issn |
2304-6732 |
publishDate |
2019-11-01 |
description |
The pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measured in pseudophakic participants. Furthermore, the impact of the measured values on eye optical quality was investigated using a computer simulation model. A binocular eye-tracker was used to measure the participants’ pupil sizes at six object distances, ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> D) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> D), while observing a Maltese cross with a constant angular size of <inline-formula> <math display="inline"> <semantics> <msup> <mn>1</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. In total, 58 pseudophakic participants were enrolled in this study (age mean ± standard deviation: <inline-formula> <math display="inline"> <semantics> <mrow> <mn>70.5</mn> <mo>±</mo> <mn>11.3</mn> </mrow> </semantics> </math> </inline-formula> years). The effects of object distance and age on pupil size variation were investigated using linear mixed effects regression models. Age was found to have a small contribution to individual variability. The mean infinite distance pupil size (intercept) was <inline-formula> <math display="inline"> <semantics> <mrow> <mn>4.45</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: 2.74, 6.17) mm and the mean proximal miosis (slope) was <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>0.23</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: −0.53, 0.08) mm/D. The visual acuity (VA) estimation for a distant object ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil) and the near VA (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m) when mean proximal miosis was considered ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.28</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.42</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil). When mean distance pupil was considered, proximal miosis individual variability produced a variation of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR for the near object and negligible variation for the distant object. These results support the importance of distance pupil size measurement for the prediction of visual performance in pseudophakia, while suggesting that proximal miosis has a negligible impact in VA variability. |
topic |
pupil size cataract surgery pseudophakic ocular accommodation visual assessment visual optics optical quality eye model |
url |
https://www.mdpi.com/2304-6732/6/4/114 |
work_keys_str_mv |
AT elsafonseca pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence AT paulofiadeiro pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence AT renatogomes pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence AT angelsancheztrancon pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence AT antoniobaptista pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence AT pedroserra pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence |
_version_ |
1725040925009248256 |
spelling |
doaj-db768f6d7a2e4228855eac4644b135c32020-11-25T01:41:26ZengMDPI AGPhotonics2304-67322019-11-016411410.3390/photonics6040114photonics6040114Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical InfluenceElsa Fonseca0Paulo Fiadeiro1Renato Gomes2Angel Sanchez Trancon3António Baptista4Pedro Serra5Departamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalDepartamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalDepartamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalCataract and Refractive Surgery Unit, Ophthalmic Clinic Vista Sanchez Trancon, Calle la Violeta, 06010 Badajoz, SpainCenter of Physics, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, PortugalCataract and Refractive Surgery Unit, Ophthalmic Clinic Vista Sanchez Trancon, Calle la Violeta, 06010 Badajoz, SpainThe pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measured in pseudophakic participants. Furthermore, the impact of the measured values on eye optical quality was investigated using a computer simulation model. A binocular eye-tracker was used to measure the participants’ pupil sizes at six object distances, ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> D) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> D), while observing a Maltese cross with a constant angular size of <inline-formula> <math display="inline"> <semantics> <msup> <mn>1</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. In total, 58 pseudophakic participants were enrolled in this study (age mean ± standard deviation: <inline-formula> <math display="inline"> <semantics> <mrow> <mn>70.5</mn> <mo>±</mo> <mn>11.3</mn> </mrow> </semantics> </math> </inline-formula> years). The effects of object distance and age on pupil size variation were investigated using linear mixed effects regression models. Age was found to have a small contribution to individual variability. The mean infinite distance pupil size (intercept) was <inline-formula> <math display="inline"> <semantics> <mrow> <mn>4.45</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: 2.74, 6.17) mm and the mean proximal miosis (slope) was <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>0.23</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: −0.53, 0.08) mm/D. The visual acuity (VA) estimation for a distant object ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil) and the near VA (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m) when mean proximal miosis was considered ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.28</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.42</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil). When mean distance pupil was considered, proximal miosis individual variability produced a variation of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR for the near object and negligible variation for the distant object. These results support the importance of distance pupil size measurement for the prediction of visual performance in pseudophakia, while suggesting that proximal miosis has a negligible impact in VA variability.https://www.mdpi.com/2304-6732/6/4/114pupil sizecataract surgerypseudophakicocular accommodationvisual assessmentvisual opticsoptical qualityeye model |