Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence

The pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measu...

Full description

Bibliographic Details
Main Authors: Elsa Fonseca, Paulo Fiadeiro, Renato Gomes, Angel Sanchez Trancon, António Baptista, Pedro Serra
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/6/4/114
id doaj-db768f6d7a2e4228855eac4644b135c3
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Elsa Fonseca
Paulo Fiadeiro
Renato Gomes
Angel Sanchez Trancon
António Baptista
Pedro Serra
spellingShingle Elsa Fonseca
Paulo Fiadeiro
Renato Gomes
Angel Sanchez Trancon
António Baptista
Pedro Serra
Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
Photonics
pupil size
cataract surgery
pseudophakic
ocular accommodation
visual assessment
visual optics
optical quality
eye model
author_facet Elsa Fonseca
Paulo Fiadeiro
Renato Gomes
Angel Sanchez Trancon
António Baptista
Pedro Serra
author_sort Elsa Fonseca
title Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
title_short Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
title_full Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
title_fullStr Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
title_full_unstemmed Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical Influence
title_sort pupil function in pseudophakia: proximal miosis behavior and optical influence
publisher MDPI AG
series Photonics
issn 2304-6732
publishDate 2019-11-01
description The pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measured in pseudophakic participants. Furthermore, the impact of the measured values on eye optical quality was investigated using a computer simulation model. A binocular eye-tracker was used to measure the participants&#8217; pupil sizes at six object distances, ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> D) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> D), while observing a Maltese cross with a constant angular size of <inline-formula> <math display="inline"> <semantics> <msup> <mn>1</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. In total, 58 pseudophakic participants were enrolled in this study (age mean &#177; standard deviation: <inline-formula> <math display="inline"> <semantics> <mrow> <mn>70.5</mn> <mo>&#177;</mo> <mn>11.3</mn> </mrow> </semantics> </math> </inline-formula> years). The effects of object distance and age on pupil size variation were investigated using linear mixed effects regression models. Age was found to have a small contribution to individual variability. The mean infinite distance pupil size (intercept) was <inline-formula> <math display="inline"> <semantics> <mrow> <mn>4.45</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: 2.74, 6.17) mm and the mean proximal miosis (slope) was <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8722;</mo> <mn>0.23</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: &#8722;0.53, 0.08) mm/D. The visual acuity (VA) estimation for a distant object ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8722;</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil) and the near VA (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m) when mean proximal miosis was considered ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.28</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.42</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil). When mean distance pupil was considered, proximal miosis individual variability produced a variation of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR for the near object and negligible variation for the distant object. These results support the importance of distance pupil size measurement for the prediction of visual performance in pseudophakia, while suggesting that proximal miosis has a negligible impact in VA variability.
topic pupil size
cataract surgery
pseudophakic
ocular accommodation
visual assessment
visual optics
optical quality
eye model
url https://www.mdpi.com/2304-6732/6/4/114
work_keys_str_mv AT elsafonseca pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
AT paulofiadeiro pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
AT renatogomes pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
AT angelsancheztrancon pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
AT antoniobaptista pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
AT pedroserra pupilfunctioninpseudophakiaproximalmiosisbehaviorandopticalinfluence
_version_ 1725040925009248256
spelling doaj-db768f6d7a2e4228855eac4644b135c32020-11-25T01:41:26ZengMDPI AGPhotonics2304-67322019-11-016411410.3390/photonics6040114photonics6040114Pupil Function in Pseudophakia: Proximal Miosis Behavior and Optical InfluenceElsa Fonseca0Paulo Fiadeiro1Renato Gomes2Angel Sanchez Trancon3António Baptista4Pedro Serra5Departamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalDepartamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalDepartamento de Física, Universidade da Beira Interior (UBI), Av. Marquês de Ávila e Bolama, 6201-001 Covilhã, PortugalCataract and Refractive Surgery Unit, Ophthalmic Clinic Vista Sanchez Trancon, Calle la Violeta, 06010 Badajoz, SpainCenter of Physics, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, PortugalCataract and Refractive Surgery Unit, Ophthalmic Clinic Vista Sanchez Trancon, Calle la Violeta, 06010 Badajoz, SpainThe pseudophakic eye lacks the ability to produce a refractive change in response to object proximity. Thus, individual anatomical features such as the pupil size play an important role in achieving functional vision levels. In this work, the range of pupil sizes at varying object distance was measured in pseudophakic participants. Furthermore, the impact of the measured values on eye optical quality was investigated using a computer simulation model. A binocular eye-tracker was used to measure the participants&#8217; pupil sizes at six object distances, ranging from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> D) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3.00</mn> </mrow> </semantics> </math> </inline-formula> m (i.e., vergence of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> D), while observing a Maltese cross with a constant angular size of <inline-formula> <math display="inline"> <semantics> <msup> <mn>1</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. In total, 58 pseudophakic participants were enrolled in this study (age mean &#177; standard deviation: <inline-formula> <math display="inline"> <semantics> <mrow> <mn>70.5</mn> <mo>&#177;</mo> <mn>11.3</mn> </mrow> </semantics> </math> </inline-formula> years). The effects of object distance and age on pupil size variation were investigated using linear mixed effects regression models. Age was found to have a small contribution to individual variability. The mean infinite distance pupil size (intercept) was <inline-formula> <math display="inline"> <semantics> <mrow> <mn>4.45</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: 2.74, 6.17) mm and the mean proximal miosis (slope) was <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8722;</mo> <mn>0.23</mn> </mrow> </semantics> </math> </inline-formula> (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> CI: &#8722;0.53, 0.08) mm/D. The visual acuity (VA) estimation for a distant object ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8722;</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil) and the near VA (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> m) when mean proximal miosis was considered ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.28</mn> </mrow> </semantics> </math> </inline-formula> logMAR (smallest pupil) to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.42</mn> </mrow> </semantics> </math> </inline-formula> logMAR (largest pupil). When mean distance pupil was considered, proximal miosis individual variability produced a variation of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.04</mn> </mrow> </semantics> </math> </inline-formula> logMAR for the near object and negligible variation for the distant object. These results support the importance of distance pupil size measurement for the prediction of visual performance in pseudophakia, while suggesting that proximal miosis has a negligible impact in VA variability.https://www.mdpi.com/2304-6732/6/4/114pupil sizecataract surgerypseudophakicocular accommodationvisual assessmentvisual opticsoptical qualityeye model