Evolution and Identification of the WRKY Gene Family in Quinoa (<i>Chenopodium quinoa</i>)

The WRKY gene family plays a unique role in plant stress tolerance. Quinoa is a cultivated crop worldwide that is known for its high stress tolerance. The WRKY gene family in quinoa has not yet been studied. Using a genome-wide search method, we identified 1226 WRKY genes in 15 plant species, seven...

Full description

Bibliographic Details
Main Authors: Hong Yue, Xi Chang, Yongqiang Zhi, Lan Wang, Guangwei Xing, Weining Song, Xiaojun Nie
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/10/2/131
Description
Summary:The WRKY gene family plays a unique role in plant stress tolerance. Quinoa is a cultivated crop worldwide that is known for its high stress tolerance. The WRKY gene family in quinoa has not yet been studied. Using a genome-wide search method, we identified 1226 WRKY genes in 15 plant species, seven animal species, and seven fungi species. WRKY proteins were not found in animal species and five fungi species, but were, however, widespread in land plants. A total of 92 CqWRKY genes were identified in quinoa. Based on the phylogenetic analysis, these CqWRKY genes were classified into three groups. The CqWRKY proteins have a highly conserved heptapeptide WRKYGQK with 15 conserved elements. Furthermore, a total of 25 CqWRKY genes were involved in the co-expression pathway of organ development and osmotic stress. The expression level of more than half of these CqWRKY genes showed significant variation under salt or drought stress. This study reports, for the first time, the findings of the CqWRKY gene family in quinoa at the genome-wide level. This information will be beneficial for our understanding of the molecular mechanisms of stress tolerance in crops, such as quinoa.
ISSN:2073-4425