Nonlinear Model Establishment and Experimental Verification of a Pneumatic Rotary Actuator Position Servo System

In order to accurately reflect the characteristics and motion states of a pneumatic rotary actuator position servo system, an accurate non-linear model of the valve-controlled actuator system is proposed, and its parameter identification and experimental verification are carried out. Firstly, in the...

Full description

Bibliographic Details
Main Authors: Yeming Zhang, Ke Li, Geng Wang, Jingcheng Liu, Maolin Cai
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/6/1096
Description
Summary:In order to accurately reflect the characteristics and motion states of a pneumatic rotary actuator position servo system, an accurate non-linear model of the valve-controlled actuator system is proposed, and its parameter identification and experimental verification are carried out. Firstly, in the modeling of this system, the mass flow rate of the gas flowing through each port of the proportional directional control valve is derived by taking into account the clearance between the valve spool and the sleeve, the heat transfer formula is used to the derivation of the energy equation, and the Stribeck model is applied to the friction model of the pneumatic rotary actuator. Then, the flow coefficient, the heat transfer coefficient and the friction parameters are identified by the model and pneumatic test circuits. After the verification experiment of the mass flow rate equations, the charging and discharging experiment reveals that the model can clearly show the effect of clearances on gas pressure changes and describe the effect of heat transfer on gas temperature changes. Finally, the results of model verification indicate that the simulation curves of rotation angle and two-chamber pressures are consistent with their experimental values, and the non-linear model shows high accuracy.
ISSN:1996-1073