Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process
Non-classical crystallization, in which charged nanoparticles (NPs) are the building blocks of film growth, has been extensively studied in chemical vapor deposition (CVD). Here, the deposition behavior of silicon oxide films by the two-step growth process, where NPs are generated in the gas phase a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Coatings |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-6412/11/3/365 |
id |
doaj-db53d9de54ea43aab8ca65b6de4490b4 |
---|---|
record_format |
Article |
spelling |
doaj-db53d9de54ea43aab8ca65b6de4490b42021-03-24T00:04:52ZengMDPI AGCoatings2079-64122021-03-011136536510.3390/coatings11030365Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition ProcessJae-Ho Suk0Sung-Chun Hong1Gil-Su Jang2Nong-Moon Hwang3Department of Material Science and Engineering, College of Engineering at Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, KoreaDepartment of Material Science and Engineering, College of Engineering at Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, KoreaDepartment of Material Science and Engineering, College of Engineering at Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, KoreaDepartment of Material Science and Engineering, College of Engineering at Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, KoreaNon-classical crystallization, in which charged nanoparticles (NPs) are the building blocks of film growth, has been extensively studied in chemical vapor deposition (CVD). Here, the deposition behavior of silicon oxide films by the two-step growth process, where NPs are generated in the gas phase at high temperature and deposited as films at low temperature, was studied in the CVD process. Although we supplied SiH<sub>4</sub>, H<sub>2</sub>, and N<sub>2</sub>, the deposited film turned out to be silicon oxide, which is attributed to relatively poor vacuum. Also, silicon oxide NPs were captured on transmission electron microscopy (TEM) carbon membranes of a copper grid for 10 s under various conditions. When the quartz tube with a conical nozzle was used, the size of nanoparticles increased drastically with increasing processing time (or delay time) and porous films with a rough surface were deposited. When the quartz tube without a nozzle was used, however, the size did not increase much with increasing processing time and dense films with a smooth surface were deposited. These results suggest that the size of nanoparticles is an important parameter for the deposition of dense films for two-step growth at low temperatures.https://www.mdpi.com/2079-6412/11/3/365charged nanoparticlesthin filmstwo-step growthlow temperature |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jae-Ho Suk Sung-Chun Hong Gil-Su Jang Nong-Moon Hwang |
spellingShingle |
Jae-Ho Suk Sung-Chun Hong Gil-Su Jang Nong-Moon Hwang Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process Coatings charged nanoparticles thin films two-step growth low temperature |
author_facet |
Jae-Ho Suk Sung-Chun Hong Gil-Su Jang Nong-Moon Hwang |
author_sort |
Jae-Ho Suk |
title |
Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process |
title_short |
Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process |
title_full |
Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process |
title_fullStr |
Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process |
title_full_unstemmed |
Two-Step Deposition of Silicon Oxide Films Using the Gas Phase Generation of Nanoparticles in the Chemical Vapor Deposition Process |
title_sort |
two-step deposition of silicon oxide films using the gas phase generation of nanoparticles in the chemical vapor deposition process |
publisher |
MDPI AG |
series |
Coatings |
issn |
2079-6412 |
publishDate |
2021-03-01 |
description |
Non-classical crystallization, in which charged nanoparticles (NPs) are the building blocks of film growth, has been extensively studied in chemical vapor deposition (CVD). Here, the deposition behavior of silicon oxide films by the two-step growth process, where NPs are generated in the gas phase at high temperature and deposited as films at low temperature, was studied in the CVD process. Although we supplied SiH<sub>4</sub>, H<sub>2</sub>, and N<sub>2</sub>, the deposited film turned out to be silicon oxide, which is attributed to relatively poor vacuum. Also, silicon oxide NPs were captured on transmission electron microscopy (TEM) carbon membranes of a copper grid for 10 s under various conditions. When the quartz tube with a conical nozzle was used, the size of nanoparticles increased drastically with increasing processing time (or delay time) and porous films with a rough surface were deposited. When the quartz tube without a nozzle was used, however, the size did not increase much with increasing processing time and dense films with a smooth surface were deposited. These results suggest that the size of nanoparticles is an important parameter for the deposition of dense films for two-step growth at low temperatures. |
topic |
charged nanoparticles thin films two-step growth low temperature |
url |
https://www.mdpi.com/2079-6412/11/3/365 |
work_keys_str_mv |
AT jaehosuk twostepdepositionofsiliconoxidefilmsusingthegasphasegenerationofnanoparticlesinthechemicalvapordepositionprocess AT sungchunhong twostepdepositionofsiliconoxidefilmsusingthegasphasegenerationofnanoparticlesinthechemicalvapordepositionprocess AT gilsujang twostepdepositionofsiliconoxidefilmsusingthegasphasegenerationofnanoparticlesinthechemicalvapordepositionprocess AT nongmoonhwang twostepdepositionofsiliconoxidefilmsusingthegasphasegenerationofnanoparticlesinthechemicalvapordepositionprocess |
_version_ |
1724205425460510720 |