Existence of solutions for fractional $p$-Kirchhoff equations with critical nonlinearities

In this article, we show the existence of non-negative solutions of the fractional p-Kirchhoff problem $$\displaylines{ -M(\int_{\mathbb{R}^{2n}} |u(x)-u(y)|^pK(x-y)dx\,dy)\mathcal{L}_Ku =\lambda f(x,u)+|u|^{p^* -2}u\quad \text{in }\Omega,\cr u=0\quad \text{in }\mathbb{R}^{n}\setminus\Omega, }...

Full description

Bibliographic Details
Main Authors: Pawan Kumar Mishra, Konijeti Sreenadh
Format: Article
Language:English
Published: Texas State University 2015-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/93/abstr.html
Description
Summary:In this article, we show the existence of non-negative solutions of the fractional p-Kirchhoff problem $$\displaylines{ -M(\int_{\mathbb{R}^{2n}} |u(x)-u(y)|^pK(x-y)dx\,dy)\mathcal{L}_Ku =\lambda f(x,u)+|u|^{p^* -2}u\quad \text{in }\Omega,\cr u=0\quad \text{in }\mathbb{R}^{n}\setminus\Omega, }$$ where $\mathcal{L}_K$ is a p-fractional type non local operator with kernel K, $\Omega$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary, M and f are continuous functions, and $p^*$ is the fractional Sobolev exponent.
ISSN:1072-6691