Summary: | The purification effect of a biological aerated filter (BAF) mainly comes from the microorganisms in the reactor. Understanding the correlation between microbial community characteristics and environmental factors along the filter has great significance for maintaining good operation and improving the removal efficiency of the filter. A two-stage BAF was employed to treat domestic sewage under organic loads of 1.02 and 1.55 kg/m<sup>3</sup>·d for 15 days each. 16S rDNA high-throughput sequencing technology and redundancy analysis were applied to explore the correlation between microbial community characteristics and environmental variables. The results showed that: (1) the crucial organic-degrading bacteria in the A-stage filter were of the genus <i>Novosphingobium</i>, which had a significant increase in terms of relative abundance at sampling outlet A3 (135 cm of the filling height) after the increase of organic load; (2) the microbial communities at different positions in the B-stage filter were similarly affected by environmental factors, and the main bacteria associated with nitrogen removal in the B-stage filter were <i>Zoogloea</i> and <i>Rhodocyclus</i>; and (3) to improve the pollutant removal performance of this two-stage biological aerated filter, a strategy of adding an internal circulation in the B-stage filter can be adopted.
|