Summary: | A series of earthquake events give impetus to research on the ductile fracture behavior of steel materials. In the last decades, many fracture models have been developed and utilized in the mechanical or aerospace engineering. Nevertheless, very little application to structural members used in the construction industry has been made due to the lack of a suitable model for the fracture behavior of constructional steel. This paper presents the experimental and finite element (FE) technique to predict ductile fracture in mild carbon structural steel (SS275) sheets, which has been widely used in building structures. The post-necking true stress–strain responses were successfully estimated using the weighted-average method. The Bao and Wierzbicki (BW) model, which requires only two model parameters, was selected for the identification of fracture locus. Each model parameter was calibrated from uniaxial tension and in-plane shear specimens with the aid of digital image correlation (DIC) and finite element analysis. Fracture simulation was then performed and validated based on the experimental results of the specimens under combined tension and shear stress state.
|