REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration
Numerous phosphate occurrences are located in the Bohemian Cretaceous Basin (BCB) of the Czech Republic, within the Cenomanian–Turonian sequences. Small phosphate occurrences have been reported in the Upper Cenomanian, Lower Turonian, and Upper Turonian marine glauconitic siliciclasts. The phosphate...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Minerals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-163X/11/3/246 |
id |
doaj-db150b028dca465b977d0e8f6c609d7a |
---|---|
record_format |
Article |
spelling |
doaj-db150b028dca465b977d0e8f6c609d7a2021-02-27T00:07:29ZengMDPI AGMinerals2075-163X2021-02-011124624610.3390/min11030246REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future ExplorationKhaldoun Al-Bassam0Petr Rambousek1Stanislav Čech2Czech Geological Survey (CGS), Prague 118 21, Czech RepublicCzech Geological Survey (CGS), Prague 118 21, Czech RepublicCzech Geological Survey (CGS), Prague 118 21, Czech RepublicNumerous phosphate occurrences are located in the Bohemian Cretaceous Basin (BCB) of the Czech Republic, within the Cenomanian–Turonian sequences. Small phosphate occurrences have been reported in the Upper Cenomanian, Lower Turonian, and Upper Turonian marine glauconitic siliciclasts. The phosphates are generally <1 m thick, present as phosphatized hardgrounds, nodules, coprolites, skeletal remains, phosphatized shells, peloids, sponges, and tube-fills, associated with black mudstone and other siliciclasts. Only recently the critical elements have been highlighted in these phosphates. The present study covers eight of these occurrences and provides information on petrography, mineralogy, and chemical composition of major elements, trace elements, and stable isotopes. The phosphate mineralogy is comprised of carbonate-fluorapatite, associated with quartz, glauconite, smectite, kaolinite, and pyrite. Most of the phosphates are rich in organic matter. The phosphate chemistry is dominated by P<sub>2</sub>O<sub>5</sub>, CaO, F, Na<sub>2</sub>O, SO<sub>3</sub>, and CO<sub>2</sub>. Minor amounts of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and MgO are found, related to quartz and alumino-silicate impurities. Evidence of fossil microbial structures is revealed. The indices derived from rare earth elements (REE) indicate phosphogenesis at various redox conditions, ranging from anoxic to oxic, whereas the carbon stable isotopes of the apatite suggest generally reducing conditions. The critical and other valuable elements found in these Mid-Cretaceous phosphates include P<sub>2</sub>O<sub>5</sub> (18.9–26.76 wt. %), F (1.67–3.25 wt. %), REE (325–1338 ppm), Y (74–368 ppm), and U (10.4–37.9 ppm). The investigation of the Turonian phosphate occurrences show that those located at the base of the Bílá Hora Formation (earliest Turonian) are the most persistent in the southern margins of the BCB, and found in localities extending for about 200 km. They were developed at the onset of the Early Turonian global transgression and are strata-bound to the base of the Bílá Hora Formation. Future exploration for marine sedimentary phosphorites should focus on thicker and better developed deposits at the base of the Turonian sediments as the main target.https://www.mdpi.com/2075-163X/11/3/246REETuronianmarine phosphatesintracontinental basinCzech Republic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Khaldoun Al-Bassam Petr Rambousek Stanislav Čech |
spellingShingle |
Khaldoun Al-Bassam Petr Rambousek Stanislav Čech REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration Minerals REE Turonian marine phosphates intracontinental basin Czech Republic |
author_facet |
Khaldoun Al-Bassam Petr Rambousek Stanislav Čech |
author_sort |
Khaldoun Al-Bassam |
title |
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration |
title_short |
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration |
title_full |
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration |
title_fullStr |
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration |
title_full_unstemmed |
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration |
title_sort |
ree-rich turonian phosphates in the bohemian cretaceous basin, czech republic: assessment as source of critical elements and implications for future exploration |
publisher |
MDPI AG |
series |
Minerals |
issn |
2075-163X |
publishDate |
2021-02-01 |
description |
Numerous phosphate occurrences are located in the Bohemian Cretaceous Basin (BCB) of the Czech Republic, within the Cenomanian–Turonian sequences. Small phosphate occurrences have been reported in the Upper Cenomanian, Lower Turonian, and Upper Turonian marine glauconitic siliciclasts. The phosphates are generally <1 m thick, present as phosphatized hardgrounds, nodules, coprolites, skeletal remains, phosphatized shells, peloids, sponges, and tube-fills, associated with black mudstone and other siliciclasts. Only recently the critical elements have been highlighted in these phosphates. The present study covers eight of these occurrences and provides information on petrography, mineralogy, and chemical composition of major elements, trace elements, and stable isotopes. The phosphate mineralogy is comprised of carbonate-fluorapatite, associated with quartz, glauconite, smectite, kaolinite, and pyrite. Most of the phosphates are rich in organic matter. The phosphate chemistry is dominated by P<sub>2</sub>O<sub>5</sub>, CaO, F, Na<sub>2</sub>O, SO<sub>3</sub>, and CO<sub>2</sub>. Minor amounts of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and MgO are found, related to quartz and alumino-silicate impurities. Evidence of fossil microbial structures is revealed. The indices derived from rare earth elements (REE) indicate phosphogenesis at various redox conditions, ranging from anoxic to oxic, whereas the carbon stable isotopes of the apatite suggest generally reducing conditions. The critical and other valuable elements found in these Mid-Cretaceous phosphates include P<sub>2</sub>O<sub>5</sub> (18.9–26.76 wt. %), F (1.67–3.25 wt. %), REE (325–1338 ppm), Y (74–368 ppm), and U (10.4–37.9 ppm). The investigation of the Turonian phosphate occurrences show that those located at the base of the Bílá Hora Formation (earliest Turonian) are the most persistent in the southern margins of the BCB, and found in localities extending for about 200 km. They were developed at the onset of the Early Turonian global transgression and are strata-bound to the base of the Bílá Hora Formation. Future exploration for marine sedimentary phosphorites should focus on thicker and better developed deposits at the base of the Turonian sediments as the main target. |
topic |
REE Turonian marine phosphates intracontinental basin Czech Republic |
url |
https://www.mdpi.com/2075-163X/11/3/246 |
work_keys_str_mv |
AT khaldounalbassam reerichturonianphosphatesinthebohemiancretaceousbasinczechrepublicassessmentassourceofcriticalelementsandimplicationsforfutureexploration AT petrrambousek reerichturonianphosphatesinthebohemiancretaceousbasinczechrepublicassessmentassourceofcriticalelementsandimplicationsforfutureexploration AT stanislavcech reerichturonianphosphatesinthebohemiancretaceousbasinczechrepublicassessmentassourceofcriticalelementsandimplicationsforfutureexploration |
_version_ |
1724248652102238208 |