Stability of a Functional Equation Deriving from Quadratic and Additive Functions in Non-Archimedean Normed Spaces
We obtain the general solution of the generalized mixed additive and quadratic functional equation fx+my+fx−my=2fx−2m2fy+m2f2y, m is even; fx+y+fx−y−2m2−1fy+m2−1f2y, m is odd, for a positive integer m. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spa...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/198018 |
Summary: | We obtain the general solution of the generalized mixed additive and quadratic functional equation fx+my+fx−my=2fx−2m2fy+m2f2y, m is even; fx+y+fx−y−2m2−1fy+m2−1f2y, m is odd, for a positive integer m. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces when m is an even positive integer or m=3. |
---|---|
ISSN: | 1085-3375 1687-0409 |