Some multiplicity results of homoclinic solutions for second order Hamiltonian systems

We look for homoclinic solutions \(q:\mathbb{R} \rightarrow \mathbb{R}^N\) to the class of second order Hamiltonian systems \[-\ddot{q} + L(t)q = a(t) \nabla G_1(q) - b(t) \nabla G_2(q) + f(t) \quad t \in \mathbb{R}\] where \(L: \mathbb{R}\rightarrow \mathbb{R}^{N \times N}\) and \(a,b: \mathbb{R}\...

Full description

Bibliographic Details
Main Authors: Sara Barile, Addolorata Salvatore
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2020-02-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol40/1/art/opuscula_math_4002.pdf
Description
Summary:We look for homoclinic solutions \(q:\mathbb{R} \rightarrow \mathbb{R}^N\) to the class of second order Hamiltonian systems \[-\ddot{q} + L(t)q = a(t) \nabla G_1(q) - b(t) \nabla G_2(q) + f(t) \quad t \in \mathbb{R}\] where \(L: \mathbb{R}\rightarrow \mathbb{R}^{N \times N}\) and \(a,b: \mathbb{R}\rightarrow \mathbb{R}\) are positive bounded functions, \(G_1, G_2: \mathbb{R}^N \rightarrow \mathbb{R}\) are positive homogeneous functions and \(f:\mathbb{R}\rightarrow\mathbb{R}^N\). Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if \(f\equiv 0\) and the existence of at least three solutions if \(f\) is not trivial but small enough.
ISSN:1232-9274