Adaptive Control of Delayed Teleoperation Systems with Parameter Convergence

It is well known that parameter convergence in adaptive control can bring about an improvement of system performance, including accurate online identification, exponential tracking, and robust adaptation without parameter drift. However, strong persistent-excitation (PE) or sufficient-excitement (SE...

Full description

Bibliographic Details
Main Authors: Yuling Li, Yixin Yin, Sen Zhang
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/1046419
Description
Summary:It is well known that parameter convergence in adaptive control can bring about an improvement of system performance, including accurate online identification, exponential tracking, and robust adaptation without parameter drift. However, strong persistent-excitation (PE) or sufficient-excitement (SE) conditions should be satisfied to guarantee parameter convergence in the classical adaptive control. This paper proposes a novel adaptive control to guarantee parameter convergence without PE and SE conditions for nonlinear teleoperation systems with dynamic uncertainties and time-varying communication delays. The stability criterion of the closed-loop teleoperation system is given in terms of linear matrix inequalities. The effectiveness of this approach is illustrated by simulation studies, where both master and slave are assumed to be two-link manipulators with full nonlinear system dynamics.
ISSN:1024-123X
1563-5147