Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer

<p>Abstract</p> <p>Background</p> <p>The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and p...

Full description

Bibliographic Details
Main Authors: Maegawa Shingo, Varga Máté, Weinberg Eric S
Format: Article
Language:English
Published: BMC 2011-05-01
Series:BMC Developmental Biology
Online Access:http://www.biomedcentral.com/1471-213X/11/26
id doaj-dafdbe8de93142f3b38750065e995f4f
record_format Article
spelling doaj-dafdbe8de93142f3b38750065e995f4f2020-11-25T00:13:28ZengBMCBMC Developmental Biology1471-213X2011-05-011112610.1186/1471-213X-11-26Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizerMaegawa ShingoVarga MátéWeinberg Eric S<p>Abstract</p> <p>Background</p> <p>The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling.</p> <p>Results</p> <p>Using the ventralized, maternal effect <it>ichabod </it>(<it>ich</it>) mutant, and by inhibiting BMP signaling in <it>ich </it>embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system.</p> <p>Conclusions</p> <p>Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer.</p> http://www.biomedcentral.com/1471-213X/11/26
collection DOAJ
language English
format Article
sources DOAJ
author Maegawa Shingo
Varga Máté
Weinberg Eric S
spellingShingle Maegawa Shingo
Varga Máté
Weinberg Eric S
Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
BMC Developmental Biology
author_facet Maegawa Shingo
Varga Máté
Weinberg Eric S
author_sort Maegawa Shingo
title Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
title_short Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
title_full Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
title_fullStr Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
title_full_unstemmed Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
title_sort correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
publisher BMC
series BMC Developmental Biology
issn 1471-213X
publishDate 2011-05-01
description <p>Abstract</p> <p>Background</p> <p>The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling.</p> <p>Results</p> <p>Using the ventralized, maternal effect <it>ichabod </it>(<it>ich</it>) mutant, and by inhibiting BMP signaling in <it>ich </it>embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system.</p> <p>Conclusions</p> <p>Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer.</p>
url http://www.biomedcentral.com/1471-213X/11/26
work_keys_str_mv AT maegawashingo correctanteroposteriorpatterningofthezebrafishneurectodermintheabsenceoftheearlydorsalorganizer
AT vargamate correctanteroposteriorpatterningofthezebrafishneurectodermintheabsenceoftheearlydorsalorganizer
AT weinbergerics correctanteroposteriorpatterningofthezebrafishneurectodermintheabsenceoftheearlydorsalorganizer
_version_ 1725394079948210176