Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts

To investigate the heat loads imposed on a reactor vessel through the natural convection of core melts in severe accidents, mass transfer experiments were performed based on the heat transfer/mass transfer analogy, using two- (2-D) and three-dimensional (3-D) facilities of various heights. The modif...

Full description

Bibliographic Details
Main Authors: Su-Hyeon Kim, Hae-Kyun Park, Bum-Jin Chung
Format: Article
Language:English
Published: Elsevier 2017-10-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573316302492
Description
Summary:To investigate the heat loads imposed on a reactor vessel through the natural convection of core melts in severe accidents, mass transfer experiments were performed based on the heat transfer/mass transfer analogy, using two- (2-D) and three-dimensional (3-D) facilities of various heights. The modified Rayleigh numbers ranged from 1012 to 1015, with a fixed Prandtl number of 2,014. The measured Nusselt numbers showed a trend similar to those of existing studies, but the absolute values showed discrepancies owing to the high Prandtl number of this system. The measured angle-dependent Nusselt numbers were analyzed for 2-D and 3-D geometries, and a multiplier was developed that enables the extrapolation of 2-D data into 3-D data. The definition of RaH′ was specified for 2-D geometries, so that results could be extrapolated for 3-D geometries; also, heat transfer correlations were developed.
ISSN:1738-5733