Stability of solutions and the problem of Aizerman  for sixth-order differential equations

This article is devoted to the investigation of stability of equilibrium of ordinary differential equations using the method of semi-definite Lyapunov’s functions. Types of scalar nonlinear sixth-order differential equations for which regular constant auxiliary functions are used are emphasized. Suf...

Full description

Bibliographic Details
Main Author: Boris S. Kalitine
Format: Article
Language:Belarusian
Published: Belarusian State University 2020-07-01
Series: Журнал Белорусского государственного университета: Математика, информатика
Subjects:
Online Access:https://journals.bsu.by/index.php/mathematics/article/view/3143
id doaj-dae863bef2214cd58a59de011de511fc
record_format Article
spelling doaj-dae863bef2214cd58a59de011de511fc2020-12-10T17:28:41ZbelBelarusian State University Журнал Белорусского государственного университета: Математика, информатика 2520-65082617-39562020-07-012495810.33581/2520-6508-2020-2-49-583143Stability of solutions and the problem of Aizerman  for sixth-order differential equationsBoris S. Kalitine0Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, BelarusThis article is devoted to the investigation of stability of equilibrium of ordinary differential equations using the method of semi-definite Lyapunov’s functions. Types of scalar nonlinear sixth-order differential equations for which regular constant auxiliary functions are used are emphasized. Sufficient conditions of global asymptotic stability and instability of the zero solution have been obtained and it has been established that the Aizerman problem has a positive solution concerning the roots of the corresponding linear differential equation. Studies highlight the advantages of using semi-definite functions compared to definitely positive Lyapunov’s functions.https://journals.bsu.by/index.php/mathematics/article/view/3143scalar differential equationstabilitysemi-definite lyapunov's functionequilibrium
collection DOAJ
language Belarusian
format Article
sources DOAJ
author Boris S. Kalitine
spellingShingle Boris S. Kalitine
Stability of solutions and the problem of Aizerman  for sixth-order differential equations
Журнал Белорусского государственного университета: Математика, информатика
scalar differential equation
stability
semi-definite lyapunov's function
equilibrium
author_facet Boris S. Kalitine
author_sort Boris S. Kalitine
title Stability of solutions and the problem of Aizerman  for sixth-order differential equations
title_short Stability of solutions and the problem of Aizerman  for sixth-order differential equations
title_full Stability of solutions and the problem of Aizerman  for sixth-order differential equations
title_fullStr Stability of solutions and the problem of Aizerman  for sixth-order differential equations
title_full_unstemmed Stability of solutions and the problem of Aizerman  for sixth-order differential equations
title_sort stability of solutions and the problem of aizerman  for sixth-order differential equations
publisher Belarusian State University
series Журнал Белорусского государственного университета: Математика, информатика
issn 2520-6508
2617-3956
publishDate 2020-07-01
description This article is devoted to the investigation of stability of equilibrium of ordinary differential equations using the method of semi-definite Lyapunov’s functions. Types of scalar nonlinear sixth-order differential equations for which regular constant auxiliary functions are used are emphasized. Sufficient conditions of global asymptotic stability and instability of the zero solution have been obtained and it has been established that the Aizerman problem has a positive solution concerning the roots of the corresponding linear differential equation. Studies highlight the advantages of using semi-definite functions compared to definitely positive Lyapunov’s functions.
topic scalar differential equation
stability
semi-definite lyapunov's function
equilibrium
url https://journals.bsu.by/index.php/mathematics/article/view/3143
work_keys_str_mv AT borisskalitine stabilityofsolutionsandtheproblemofaizermanforsixthorderdifferentialequations
_version_ 1724387309055377408