From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD

This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous c...

Full description

Bibliographic Details
Main Authors: Schulze S., Kestel M., Nikrityuk P. A., Safronov D.
Format: Article
Language:English
Published: EDP Sciences 2013-04-01
Series:Oil & Gas Science and Technology
Online Access:http://dx.doi.org/10.2516/ogst/2012069
id doaj-dac2ae4b4f42400691fa05eb1d8384d7
record_format Article
spelling doaj-dac2ae4b4f42400691fa05eb1d8384d72021-02-02T02:19:10ZengEDP SciencesOil & Gas Science and Technology1294-44751953-81892013-04-016861007102610.2516/ogst/2012069ogst120095From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFDSchulze S.Kestel M.Nikrityuk P. A.Safronov D. This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2). Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003) Combust. Flame 132, 743-753). Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10%) between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient temperature on the char particle behaviour. http://dx.doi.org/10.2516/ogst/2012069
collection DOAJ
language English
format Article
sources DOAJ
author Schulze S.
Kestel M.
Nikrityuk P. A.
Safronov D.
spellingShingle Schulze S.
Kestel M.
Nikrityuk P. A.
Safronov D.
From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
Oil & Gas Science and Technology
author_facet Schulze S.
Kestel M.
Nikrityuk P. A.
Safronov D.
author_sort Schulze S.
title From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
title_short From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
title_full From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
title_fullStr From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
title_full_unstemmed From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
title_sort from detailed description of chemical reacting carbon particles to subgrid models for cfd
publisher EDP Sciences
series Oil & Gas Science and Technology
issn 1294-4475
1953-8189
publishDate 2013-04-01
description This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2). Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003) Combust. Flame 132, 743-753). Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10%) between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient temperature on the char particle behaviour.
url http://dx.doi.org/10.2516/ogst/2012069
work_keys_str_mv AT schulzes fromdetaileddescriptionofchemicalreactingcarbonparticlestosubgridmodelsforcfd
AT kestelm fromdetaileddescriptionofchemicalreactingcarbonparticlestosubgridmodelsforcfd
AT nikrityukpa fromdetaileddescriptionofchemicalreactingcarbonparticlestosubgridmodelsforcfd
AT safronovd fromdetaileddescriptionofchemicalreactingcarbonparticlestosubgridmodelsforcfd
_version_ 1724310100145864704