Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration

Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer repla...

Full description

Bibliographic Details
Main Authors: Behi Behnaz, Arefi Ali, Pezeshki Houman, Shahnia Farhad
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:Renewable Energy and Environmental Sustainability
Online Access:https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170013s/rees170013s.html
id doaj-dabf24d4ec0c4fd381fb3845edae9af5
record_format Article
spelling doaj-dabf24d4ec0c4fd381fb3845edae9af52020-11-25T04:00:34ZengEDP SciencesRenewable Energy and Environmental Sustainability2493-94392017-01-0122710.1051/rees/2017013rees170013sDistribution transformer lifetime analysis in the presence of demand response and rooftop PV integrationBehi Behnaz0Arefi Ali1Pezeshki Houman2Shahnia Farhad3School of Engineering and Information Technology, Murdoch UniversitySchool of Engineering and Information Technology, Murdoch UniversitySchool of Electrical Engineering and Computer Science, Queensland University of TechnologySchool of Engineering and Information Technology, Murdoch UniversityMany distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR) are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV) integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers.https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170013s/rees170013s.html
collection DOAJ
language English
format Article
sources DOAJ
author Behi Behnaz
Arefi Ali
Pezeshki Houman
Shahnia Farhad
spellingShingle Behi Behnaz
Arefi Ali
Pezeshki Houman
Shahnia Farhad
Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
Renewable Energy and Environmental Sustainability
author_facet Behi Behnaz
Arefi Ali
Pezeshki Houman
Shahnia Farhad
author_sort Behi Behnaz
title Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
title_short Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
title_full Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
title_fullStr Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
title_full_unstemmed Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration
title_sort distribution transformer lifetime analysis in the presence of demand response and rooftop pv integration
publisher EDP Sciences
series Renewable Energy and Environmental Sustainability
issn 2493-9439
publishDate 2017-01-01
description Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR) are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV) integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers.
url https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170013s/rees170013s.html
work_keys_str_mv AT behibehnaz distributiontransformerlifetimeanalysisinthepresenceofdemandresponseandrooftoppvintegration
AT arefiali distributiontransformerlifetimeanalysisinthepresenceofdemandresponseandrooftoppvintegration
AT pezeshkihouman distributiontransformerlifetimeanalysisinthepresenceofdemandresponseandrooftoppvintegration
AT shahniafarhad distributiontransformerlifetimeanalysisinthepresenceofdemandresponseandrooftoppvintegration
_version_ 1724449696145997824