Algebraic values of sines and cosines and their arguments

The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence,...

Full description

Bibliographic Details
Main Authors: Edmundas Mazėtis, Grigorijus Melničenko
Format: Article
Language:English
Published: Vilnius University Press 2021-03-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/22717
id doaj-da9b6697c4334afb8b1ba5202d750a58
record_format Article
spelling doaj-da9b6697c4334afb8b1ba5202d750a582021-03-16T09:22:44ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2021-03-0161B10.15388/LMR.2020.22717Algebraic values of sines and cosines and their argumentsEdmundas Mazėtis0Grigorijus Melničenko1Vilniaus UniversityVytauto Magnus University The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence, it follows that the values of all angles of the pseudo-Heronian triangle, including the values of all angles of the Pythagoras or Heron triangle, expressed in radians, are transcendental numbers. If the arguments of functions sin x and cos x, expressed in radians, are equal to x = r 2 \pi, where r are rational numbers, then the values of the functions are algebraic numbers. It should be noted that in this case the argument x = r 2\pi  is transcendental and, if expressed in degrees, becomes a rational. https://www.zurnalai.vu.lt/LMR/article/view/22717trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpharational numbersalgebraic numberstranscendental numbersLindemann–Weierstrass theorem
collection DOAJ
language English
format Article
sources DOAJ
author Edmundas Mazėtis
Grigorijus Melničenko
spellingShingle Edmundas Mazėtis
Grigorijus Melničenko
Algebraic values of sines and cosines and their arguments
Lietuvos Matematikos Rinkinys
trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpha
rational numbers
algebraic numbers
transcendental numbers
Lindemann–Weierstrass theorem
author_facet Edmundas Mazėtis
Grigorijus Melničenko
author_sort Edmundas Mazėtis
title Algebraic values of sines and cosines and their arguments
title_short Algebraic values of sines and cosines and their arguments
title_full Algebraic values of sines and cosines and their arguments
title_fullStr Algebraic values of sines and cosines and their arguments
title_full_unstemmed Algebraic values of sines and cosines and their arguments
title_sort algebraic values of sines and cosines and their arguments
publisher Vilnius University Press
series Lietuvos Matematikos Rinkinys
issn 0132-2818
2335-898X
publishDate 2021-03-01
description The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence, it follows that the values of all angles of the pseudo-Heronian triangle, including the values of all angles of the Pythagoras or Heron triangle, expressed in radians, are transcendental numbers. If the arguments of functions sin x and cos x, expressed in radians, are equal to x = r 2 \pi, where r are rational numbers, then the values of the functions are algebraic numbers. It should be noted that in this case the argument x = r 2\pi  is transcendental and, if expressed in degrees, becomes a rational.
topic trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpha
rational numbers
algebraic numbers
transcendental numbers
Lindemann–Weierstrass theorem
url https://www.zurnalai.vu.lt/LMR/article/view/22717
work_keys_str_mv AT edmundasmazetis algebraicvaluesofsinesandcosinesandtheirarguments
AT grigorijusmelnicenko algebraicvaluesofsinesandcosinesandtheirarguments
_version_ 1724219936793952256