Algebraic values of sines and cosines and their arguments
The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2021-03-01
|
Series: | Lietuvos Matematikos Rinkinys |
Subjects: | |
Online Access: | https://www.zurnalai.vu.lt/LMR/article/view/22717 |
id |
doaj-da9b6697c4334afb8b1ba5202d750a58 |
---|---|
record_format |
Article |
spelling |
doaj-da9b6697c4334afb8b1ba5202d750a582021-03-16T09:22:44ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2021-03-0161B10.15388/LMR.2020.22717Algebraic values of sines and cosines and their argumentsEdmundas Mazėtis0Grigorijus Melničenko1Vilniaus UniversityVytauto Magnus University The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence, it follows that the values of all angles of the pseudo-Heronian triangle, including the values of all angles of the Pythagoras or Heron triangle, expressed in radians, are transcendental numbers. If the arguments of functions sin x and cos x, expressed in radians, are equal to x = r 2 \pi, where r are rational numbers, then the values of the functions are algebraic numbers. It should be noted that in this case the argument x = r 2\pi is transcendental and, if expressed in degrees, becomes a rational. https://www.zurnalai.vu.lt/LMR/article/view/22717trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpharational numbersalgebraic numberstranscendental numbersLindemann–Weierstrass theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Edmundas Mazėtis Grigorijus Melničenko |
spellingShingle |
Edmundas Mazėtis Grigorijus Melničenko Algebraic values of sines and cosines and their arguments Lietuvos Matematikos Rinkinys trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpha rational numbers algebraic numbers transcendental numbers Lindemann–Weierstrass theorem |
author_facet |
Edmundas Mazėtis Grigorijus Melničenko |
author_sort |
Edmundas Mazėtis |
title |
Algebraic values of sines and cosines and their arguments |
title_short |
Algebraic values of sines and cosines and their arguments |
title_full |
Algebraic values of sines and cosines and their arguments |
title_fullStr |
Algebraic values of sines and cosines and their arguments |
title_full_unstemmed |
Algebraic values of sines and cosines and their arguments |
title_sort |
algebraic values of sines and cosines and their arguments |
publisher |
Vilnius University Press |
series |
Lietuvos Matematikos Rinkinys |
issn |
0132-2818 2335-898X |
publishDate |
2021-03-01 |
description |
The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence, it follows that the values of all angles of the pseudo-Heronian triangle, including the values of all angles of the Pythagoras or Heron triangle, expressed in radians, are transcendental numbers. If the arguments of functions sin x and cos x, expressed in radians, are equal to x = r 2 \pi, where r are rational numbers, then the values of the functions are algebraic numbers. It should be noted that in this case the argument x = r 2\pi is transcendental and, if expressed in degrees, becomes a rational.
|
topic |
trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpha rational numbers algebraic numbers transcendental numbers Lindemann–Weierstrass theorem |
url |
https://www.zurnalai.vu.lt/LMR/article/view/22717 |
work_keys_str_mv |
AT edmundasmazetis algebraicvaluesofsinesandcosinesandtheirarguments AT grigorijusmelnicenko algebraicvaluesofsinesandcosinesandtheirarguments |
_version_ |
1724219936793952256 |