Mixed type of Fredholm-Volterra integral equation
In this paper, under certain conditions, the solution of mixed type of Fredholm-Volterra integral equation is discussed and obtained in the space <em>L_2</em> <em>(−1, 1) × C[0, T ], T < ∞</em>. Here, the singular part of kernel of Fredholm-Volterra integral term is establ...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
2005-05-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/137 |
id |
doaj-da919c27de8f423d85df751c599ca7ca |
---|---|
record_format |
Article |
spelling |
doaj-da919c27de8f423d85df751c599ca7ca2020-11-25T03:32:25ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982005-05-016014158115Mixed type of Fredholm-Volterra integral equationM. A. AbdouG. M. Abd Al-KaderIn this paper, under certain conditions, the solution of mixed type of Fredholm-Volterra integral equation is discussed and obtained in the space <em>L_2</em> <em>(−1, 1) × C[0, T ], T < ∞</em>. Here, the singular part of kernel of Fredholm-Volterra integral term is established in a logarithmic form, while the kernel of Fredholm-Volterra integral term is a positive continuous function in time and belongs to the class <em>C[0, T ], T < ∞</em>. The solution, when the mixed type integral, takes a system form of Fredholm integral equation of the first or second kind are discussed.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/137Fredholm-Volterra integral equationContact problemChebyshev polynomialLogarithmic kernelPotential theory method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. A. Abdou G. M. Abd Al-Kader |
spellingShingle |
M. A. Abdou G. M. Abd Al-Kader Mixed type of Fredholm-Volterra integral equation Le Matematiche Fredholm-Volterra integral equation Contact problem Chebyshev polynomial Logarithmic kernel Potential theory method |
author_facet |
M. A. Abdou G. M. Abd Al-Kader |
author_sort |
M. A. Abdou |
title |
Mixed type of Fredholm-Volterra integral equation |
title_short |
Mixed type of Fredholm-Volterra integral equation |
title_full |
Mixed type of Fredholm-Volterra integral equation |
title_fullStr |
Mixed type of Fredholm-Volterra integral equation |
title_full_unstemmed |
Mixed type of Fredholm-Volterra integral equation |
title_sort |
mixed type of fredholm-volterra integral equation |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
2005-05-01 |
description |
In this paper, under certain conditions, the solution of mixed type of Fredholm-Volterra integral equation is discussed and obtained in the space <em>L_2</em> <em>(−1, 1) × C[0, T ], T < ∞</em>. Here, the singular part of kernel of Fredholm-Volterra integral term is established in a logarithmic form, while the kernel of Fredholm-Volterra integral term is a positive continuous function in time and belongs to the class <em>C[0, T ], T < ∞</em>. The solution, when the mixed type integral, takes a system form of Fredholm integral equation of the first or second kind are discussed.<br /> |
topic |
Fredholm-Volterra integral equation Contact problem Chebyshev polynomial Logarithmic kernel Potential theory method |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/137 |
work_keys_str_mv |
AT maabdou mixedtypeoffredholmvolterraintegralequation AT gmabdalkader mixedtypeoffredholmvolterraintegralequation |
_version_ |
1724568484008951808 |