Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling

Background. Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women’s pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better identify...

Full description

Bibliographic Details
Main Authors: Xingjun Meng, Bo Zhu, Yan Liu, Lei Fang, Binbin Yin, Yanni Sun, Mengni Ma, Yuli Huang, Yuning Zhu, Yunlong Zhang
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Journal of Diabetes Research
Online Access:http://dx.doi.org/10.1155/2021/6689414
Description
Summary:Background. Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women’s pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better identify early diagnostic biomarkers and explore possible pathogenesis. Methods. We collected blood serum from 34 GDM patients and 34 normal controls for a LC-MS-based metabolomics study. Results. 184 metabolites were increased and 86 metabolites were decreased in the positive ion mode, and 65 metabolites were increased and 71 were decreased in the negative ion mode. Also, it was found that the unsaturated fatty acid metabolism was disordered in GDM. Ten metabolites with the most significant differences were selected for follow-up studies. Since the diagnostic specificity and sensitivity of a single differential metabolite are not definitive, we combined these metabolites to prepare a ROC curve. We found a set of metabolite combination with the highest sensitivity and specificity, which included eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, arachidonic acid, citric acid, α-ketoglutaric acid, and genistein. The area under the curves (AUC) value of those metabolites was 0.984 between the GDM and control group. Conclusions. Our results provide a direction for the mechanism of GDM research and demonstrate the feasibility of developing a diagnostic test that can distinguish between GDM and normal controls clearly. Our findings were helpful to develop novel biomarkers for precision or personalized diagnosis for GDM. In addition, we provide a critical insight into the pathological and biological mechanisms for GDM.
ISSN:2314-6753