Toward Measuring Target Perception: First-Order and Second-Order Deep Network Pipeline for Classification of Fixation-Related Potentials

The topdown determined visual object perception refers to the ability of a person to identify a prespecified visual target. This paper studies the technical foundation for measuring the target-perceptual ability in a guided visual search task, using the EEG-based brain imaging technique. Specificall...

Full description

Bibliographic Details
Main Authors: Hong Zeng, Junjie Shen, Wenming Zheng, Aiguo Song, Jia Liu
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Healthcare Engineering
Online Access:http://dx.doi.org/10.1155/2020/8829451
Description
Summary:The topdown determined visual object perception refers to the ability of a person to identify a prespecified visual target. This paper studies the technical foundation for measuring the target-perceptual ability in a guided visual search task, using the EEG-based brain imaging technique. Specifically, it focuses on the feature representation learning problem for single-trial classification of fixation-related potentials (FRPs). The existing methods either capture only first-order statistics while ignoring second-order statistics in data, or directly extract second-order statistics with covariance matrices estimated with raw FRPs that suffer from low signal-to-noise ratio. In this paper, we propose a new representation learning pipeline involving a low-level convolution subnetwork followed by a high-level Riemannian manifold subnetwork, with a novel midlevel pooling layer bridging them. In this way, the discriminative power of the first-order features can be increased by the convolution subnetwork, while the second-order information in the convolutional features could further be deeply learned with the subsequent Riemannian subnetwork. In particular, the temporal ordering of FRPs is well preserved for the components in our pipeline, which is considered to be a valuable source of discriminant information. The experimental results show that proposed approach leads to improved classification performance and robustness to lack of data over the state-of-the-art ones, thus making it appealing for practical applications in measuring the target-perceptual ability of cognitively impaired patients with the FRP technique.
ISSN:2040-2295
2040-2309