High dimensional parameter tuning for event generators

Abstract Monte Carlo Event Generators are important tools for the understanding of physics at particle colliders like the LHC. In order to best predict a wide variety of observables, the optimization of parameters in the Event Generators based on precision data is crucial. However, the simultaneous...

Full description

Bibliographic Details
Main Authors: Johannes Bellm, Leif Gellersen
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-019-7579-5
id doaj-d9dbfc6d74674144880e6d6961d75f29
record_format Article
spelling doaj-d9dbfc6d74674144880e6d6961d75f292021-01-24T12:40:26ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522020-01-0180111310.1140/epjc/s10052-019-7579-5High dimensional parameter tuning for event generatorsJohannes Bellm0Leif Gellersen1Department of Astronomy and Theoretical Physics, Lund UniversityDepartment of Astronomy and Theoretical Physics, Lund UniversityAbstract Monte Carlo Event Generators are important tools for the understanding of physics at particle colliders like the LHC. In order to best predict a wide variety of observables, the optimization of parameters in the Event Generators based on precision data is crucial. However, the simultaneous optimization of many parameters is computationally challenging. We present an algorithm that allows to tune Monte Carlo Event Generators for high dimensional parameter spaces. To achieve this we first split the parameter space algorithmically in subspaces and perform a Professor tuning on the subspaces with binwise weights to enhance the influence of relevant observables. We test the algorithm in ideal conditions and in real life examples including tuning of the event generators Herwig 7 and Pythia 8 for LEP observables. Further, we tune parts of the Herwig 7 event generator with the Lund string model.https://doi.org/10.1140/epjc/s10052-019-7579-5
collection DOAJ
language English
format Article
sources DOAJ
author Johannes Bellm
Leif Gellersen
spellingShingle Johannes Bellm
Leif Gellersen
High dimensional parameter tuning for event generators
European Physical Journal C: Particles and Fields
author_facet Johannes Bellm
Leif Gellersen
author_sort Johannes Bellm
title High dimensional parameter tuning for event generators
title_short High dimensional parameter tuning for event generators
title_full High dimensional parameter tuning for event generators
title_fullStr High dimensional parameter tuning for event generators
title_full_unstemmed High dimensional parameter tuning for event generators
title_sort high dimensional parameter tuning for event generators
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2020-01-01
description Abstract Monte Carlo Event Generators are important tools for the understanding of physics at particle colliders like the LHC. In order to best predict a wide variety of observables, the optimization of parameters in the Event Generators based on precision data is crucial. However, the simultaneous optimization of many parameters is computationally challenging. We present an algorithm that allows to tune Monte Carlo Event Generators for high dimensional parameter spaces. To achieve this we first split the parameter space algorithmically in subspaces and perform a Professor tuning on the subspaces with binwise weights to enhance the influence of relevant observables. We test the algorithm in ideal conditions and in real life examples including tuning of the event generators Herwig 7 and Pythia 8 for LEP observables. Further, we tune parts of the Herwig 7 event generator with the Lund string model.
url https://doi.org/10.1140/epjc/s10052-019-7579-5
work_keys_str_mv AT johannesbellm highdimensionalparametertuningforeventgenerators
AT leifgellersen highdimensionalparametertuningforeventgenerators
_version_ 1724325618131140608