Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER

In tokamaks, the radial temperature profile measured using Electron Cyclotron Emission (ECE) diagnostics are affected by many phenomena like harmonics overlap, relativistic down shifting, presence of non-thermals etc. In this paper we have estimated effects of a small non-thermal electron population...

Full description

Bibliographic Details
Main Authors: Kumar Ravinder, Pandya Hitesh Kumar B., Subhash P V, Vasu P.
Format: Article
Language:English
Published: EDP Sciences 2012-09-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20123203014
id doaj-d9d0cf480e6c435d8aaf1ed8bf056197
record_format Article
spelling doaj-d9d0cf480e6c435d8aaf1ed8bf0561972021-08-02T08:18:43ZengEDP SciencesEPJ Web of Conferences2100-014X2012-09-01320301410.1051/epjconf/20123203014Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITERKumar RavinderPandya Hitesh Kumar B.Subhash P VVasu P.In tokamaks, the radial temperature profile measured using Electron Cyclotron Emission (ECE) diagnostics are affected by many phenomena like harmonics overlap, relativistic down shifting, presence of non-thermals etc. In this paper we have estimated effects of a small non-thermal electron population on measured temperature profile for ITER-Scenario 2. For ITER like plasma, radial temperature profiles can be obtained from the second harmonic ECE spectrum. It is possible that, higher harmonics produced from the non-thermals can be relativistically downshifted to second harmonics and introduce error in the measured temperature profile. Generally Non-thermals are produced from Electron Cyclotron Resonance heating (ECRH), Electron Cyclotron Current Drive (ECCD) etc. In the present study the non-thermals are assumed to be produced from proposed ECCD, which is being considered for suppressing Neoclassical Tearing Modes (NTM). We have ignored any other source of non-thermals in the present study. All the numerical calculations reported in this paper is performed using NOTEC computer code which is capable of handling non-thermal populations. The locations and spatial extents of non-thermals are taken from previous report on optimization study of the ITER ECRH top launcher. The non-thermals are assumed to be centered around safety points q=1, q=1.5 and q=2, where the ECCD is expected to be used for suppressing the NTMs. The main results of the present study are summarized below. In the first part of the paper we present the results for temperature measurement with out non-thermal populations for the purpose of validation. Secondly the rage of higher harmonic frequencies (due to nonthermals) which possibly reach antenna and induce error in the temperature measurement are identified and the corresponding energies of non-thermal populations are calculated analytically. This calculations are further checked by simulations using NOTEC code. Finally non-thermal populations are seeded in the plasma with fraction and energies of non-thermals are varied in a parametric form. The parametric range of energies are initially bracketed by the analytical calculations explained above. The resultant temperature profiles and error in the measured temperatures will be presented. http://dx.doi.org/10.1051/epjconf/20123203014
collection DOAJ
language English
format Article
sources DOAJ
author Kumar Ravinder
Pandya Hitesh Kumar B.
Subhash P V
Vasu P.
spellingShingle Kumar Ravinder
Pandya Hitesh Kumar B.
Subhash P V
Vasu P.
Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
EPJ Web of Conferences
author_facet Kumar Ravinder
Pandya Hitesh Kumar B.
Subhash P V
Vasu P.
author_sort Kumar Ravinder
title Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
title_short Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
title_full Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
title_fullStr Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
title_full_unstemmed Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER
title_sort effects of non-thermal electrons from eccd on ece temperature measurements for iter
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2012-09-01
description In tokamaks, the radial temperature profile measured using Electron Cyclotron Emission (ECE) diagnostics are affected by many phenomena like harmonics overlap, relativistic down shifting, presence of non-thermals etc. In this paper we have estimated effects of a small non-thermal electron population on measured temperature profile for ITER-Scenario 2. For ITER like plasma, radial temperature profiles can be obtained from the second harmonic ECE spectrum. It is possible that, higher harmonics produced from the non-thermals can be relativistically downshifted to second harmonics and introduce error in the measured temperature profile. Generally Non-thermals are produced from Electron Cyclotron Resonance heating (ECRH), Electron Cyclotron Current Drive (ECCD) etc. In the present study the non-thermals are assumed to be produced from proposed ECCD, which is being considered for suppressing Neoclassical Tearing Modes (NTM). We have ignored any other source of non-thermals in the present study. All the numerical calculations reported in this paper is performed using NOTEC computer code which is capable of handling non-thermal populations. The locations and spatial extents of non-thermals are taken from previous report on optimization study of the ITER ECRH top launcher. The non-thermals are assumed to be centered around safety points q=1, q=1.5 and q=2, where the ECCD is expected to be used for suppressing the NTMs. The main results of the present study are summarized below. In the first part of the paper we present the results for temperature measurement with out non-thermal populations for the purpose of validation. Secondly the rage of higher harmonic frequencies (due to nonthermals) which possibly reach antenna and induce error in the temperature measurement are identified and the corresponding energies of non-thermal populations are calculated analytically. This calculations are further checked by simulations using NOTEC code. Finally non-thermal populations are seeded in the plasma with fraction and energies of non-thermals are varied in a parametric form. The parametric range of energies are initially bracketed by the analytical calculations explained above. The resultant temperature profiles and error in the measured temperatures will be presented.
url http://dx.doi.org/10.1051/epjconf/20123203014
work_keys_str_mv AT kumarravinder effectsofnonthermalelectronsfromeccdonecetemperaturemeasurementsforiter
AT pandyahiteshkumarb effectsofnonthermalelectronsfromeccdonecetemperaturemeasurementsforiter
AT subhashpv effectsofnonthermalelectronsfromeccdonecetemperaturemeasurementsforiter
AT vasup effectsofnonthermalelectronsfromeccdonecetemperaturemeasurementsforiter
_version_ 1721238655040749568