The first heat: production of entanglement entropy in the early universe

Abstract Entanglement entropy (EE) of a spatial region quantifies correlations between the region and its surroundings. For a free scalar in the adiabatic vacuum in de Sitter space the EE is known to remain low, scaling as the surface area of the region. Here, we study the evolution of entanglement...

Full description

Bibliographic Details
Main Authors: Sergei Khlebnikov, Akhil Sheoran
Format: Article
Language:English
Published: SpringerOpen 2019-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP11(2019)157
Description
Summary:Abstract Entanglement entropy (EE) of a spatial region quantifies correlations between the region and its surroundings. For a free scalar in the adiabatic vacuum in de Sitter space the EE is known to remain low, scaling as the surface area of the region. Here, we study the evolution of entanglement after the universe transitions from de Sitter to flat space. We concentrate on the case of a massless minimally coupled scalar. We find numerically that, after the de Sitter stage ends, the EE and the Ŕenyi entropy rapidly grow and saturate at values obeying the volume law. The final state of the subsystem (region) is a partially thermalized state reminiscent of a generalized Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.
ISSN:1029-8479