Analisis Sentimen Mengenai Moda Raya Terpadu (MRT) Jakarta dengan Metode BM25 dan K-Nearest Neighbor

Moda Raya Terpadu (MRT) Jakarta merupakan alat transportasi berkecepatan tinggi berupa kereta rel listrik yang ada di ibukota Jakarta . Adanya banyak tanggapan positif maupun negatif dari masyarakat dapat dipergunakan sebagai masukan bagi operator layanan MRT Jakarta untuk terus bisa memperbaiki pel...

Full description

Bibliographic Details
Main Authors: Indriati - Indriati, Bayu Rahayudi, Candra Dewi
Format: Article
Language:Indonesian
Published: University of Brawijaya 2021-03-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/4508
Description
Summary:Moda Raya Terpadu (MRT) Jakarta merupakan alat transportasi berkecepatan tinggi berupa kereta rel listrik yang ada di ibukota Jakarta . Adanya banyak tanggapan positif maupun negatif dari masyarakat dapat dipergunakan sebagai masukan bagi operator layanan MRT Jakarta untuk terus bisa memperbaiki pelayanan demi terwujudnya angkutan massal yang berguna bagi masyarakat. Proses pengumpulan data tanggapan dapat diperoleh dari sosial media maupun komentar-komentar di setiap pemberitaan mengenai MRT Jakarta. Data-Data tersebut akan diolah dulu dengan melewati tahapan preprocessing untuk diklasifikasikan menjadi sentimen yang bersifat positif maupun sentimen yang bersifat negatif. Metode untuk mengklasifikasikan tanggapan adalah K-Nearest Neighbor dengan menggunakan metode BM25 sebagai metode untuk mengetahui kesamaan antar data. Proses pengujian yang digunakan pada penelitian ini yaitu cross validation dengan k-fold sebanyak 5. Pengujian dilakukan dengan jumlah data data uji sebanyak 130 dokumen dan data latih sebanyak 520 dokumen untuk setiap fold. Berdasarkan rata-rata hasil pengujian diperoleh hasil terbaik pada nilai k=11 dengan nilai f-measure sebesar 0,89088, recall sebesar 0,934286, dan precision sebesar 0,852351. Hasil pengujian menunjukkan nilai k yang semakin besar menghasilkan nilai f-measure yang semakin kecil karena proses klasifikasi berjalan kurang baik dengan banyaknya tetangga yang tidak sama kelasnya dengan data uji digunakan untuk menentukan kelas data uji.
ISSN:2355-7699
2528-6579